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Abstract: Asphalt mixture proportion design is one of the most important steps in asphalt pavement
design and application. This study proposes a novel multi-objective particle swarm optimization
(MOPSO) algorithm employing the Gaussian process regression (GPR)-based machine learning (ML)
method for multi-variable, multi-level optimization problems with multiple constraints. First, the
GPR-based ML method is proposed to model the objective and constraint functions without the
explicit relationships between variables and objectives. In the optimization step, the metaheuristic
algorithm based on adaptive weight multi-objective particle swarm optimization (AWMOPSO) is
used to achieve the global optimal solution, which is very efficient for the objectives and constraints
without mathematical relationships. The results showed that the optimal GPR model could describe
the relationship between variables and objectives well in terms of root-mean-square error (RMSE) and
R2. After the optimization by the proposed GPR-AWMOPSO algorithm, the comprehensive pavement
performances were enhanced in terms of the permanent deformation resistance at high temperature,
crack resistance at low temperature as well as moisture stability. Therefore, the proposed GPR-
AWMOPSO algorithm is the best option and efficient for maximizing the performances of composite
modified asphalt mixture. The GPR-AWMOPSO algorithm has advantages of less computational time
and fewer samples, higher accuracy, etc. over traditional laboratory-based experimental methods,
which can serve as guidance for the proportion optimization design of asphalt pavement.

Keywords: asphalt mixture; proportion optimization; particle swarm optimization; Gaussian process
regression; machine learning

1. Introduction

Nowadays, it has been realized that ordinary asphalt pavements are usually unable to
service the development of traffic, due to various forms of destruction including cracking,
rutting etc. [1–8]. Many researchers around the world tried to use different methods to
enhance the service performances of asphalt pavement, and many additives like polymers,
diatomite, fibres, etc. were selected to mix with asphalt materials [9–13]. Studies demon-
strated that diatomite has been effective in improving the anti-rutting performance and
water damage resistance [14]. In addition, fibres were proved to be a kind of effective
material for the crack resistance of asphalt mixture [15]. Thus, asphalt mixture proportion
design is a key step in asphalt pavement design and application.

Conventionally, asphalt mixture proportions are optimized by laboratory tests includ-
ing asphalt content, amount of aggregates, additive parameters, etc. to achieve a designed
performance that meets requirements [16,17]. When there is only one objective to be op-
timized, the traditional experimental-based method is generally feasible [18]. However,
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in most cases, proportion optimization of asphalt mixture is a complex problem, which
needs to optimize multiple objectives simultaneously, such as performances, cost and envi-
ronmental pollution, etc. Moreover, the proportion optimization problem with multiple
objectives for asphalt mixture is usually investigated based on traditional prescriptive ap-
proaches and design of experiments (DOE), such as orthogonality design method, factorial
experiments and response surface methodology (RSM), etc. [19]. This would result in an
exponential increase in the number of laboratory trial specimens. These experimental opti-
mization process would be both time- and resource-intensive. On the other hand, asphalt
mixture proportions obtained by traditional prescriptive approaches and experiment-based
methods are considered as practical solutions, not optimal solutions [20].

To solve the boundedness of traditional prescriptive approaches and experiment-based
methods, many research studies have attempted computational design optimization, which
is a mathematical approach for mixture proportions using advanced mathematical tech-
niques and high-performance computing [21]. In this computational design optimization
process, there are three steps including the problem statement, modelling and optimization
algorithm [22]. The problem statement involves variables, objectives and constraints. The
modelling step focuses on the mathematical relationships between variables and objectives.
Nowadays, computational optimization methods based on machine learning (ML) technol-
ogy are popularly used in a lot of fields of engineering for optimization and prediction [23].
In most cases, the mixture proportion optimization problem needs to be forecasted without
knowing the explicit relationships between variables and objectives [24]. Therefore, the
objective functions can be developed based on ML techniques. There are some ML models
used for the optimization of mixture proportion, e.g., clustering, artificial neural networks,
instance-based learning, regression-based methods, decision trees and support vector ma-
chines, etc. [25–27]. After that, the optimization algorithm was employed to mathematically
address the problem and obtain its optimal mixture proportion [28]. Computational opti-
mization methods based on metaheuristic algorithms are used for mixture optimization
problem with the help of simplicity and efficiency. The metaheuristic algorithms known as
“guided search” aim to find the global optimal solution for optimization problems, which
is very useful for objectives and constraints without mathematical relationships. Many
metaheuristic optimization algorithms were developed for dealing with optimization prob-
lems. In the field of mixture proportion design, there are multiple competing objectives,
creating a rapidly growing area of optimization study [29]. For multi-objective problems
of mixture proportion design, metaheuristic optimization algorithms based on evolution,
genetic and search algorithms are commonly used optimization tools [30]. For instance,
the optimization of mixture design needs to maximize physical performances as well as
minimize both cost and environmental pollution, in which multiple objectives need to be
optimized at once. The metaheuristic algorithms e.g., particle swarm optimization (PSO),
evolutionary and genetic, etc. are iterative algorithms, which generate and search the
optimal solutions based on the fitness function and iterations.

However, in the real design of asphalt mixture, the traditional experimental-based
method is still widely employed, implying that it would require a large number of samples
and spend more time on a feasible solution. The above ML models were used to deal with
the uncertain relationships between variables and objectives of experiment-based methods.
Compared to other ML models (such as support vector machine, neural networks, etc.), the
Gaussian process regression (GPR) as a non-linear modelling method, is easy to implement
and predict with a probability distribution. In addition, the metaheuristic algorithm based
on multi-objective particle swarm optimization (MOPSO) is efficient and tractable, which
could provide a sufficiently good solution to an optimization problem.

The main objective of this study is to investigate a metaheuristic optimization algo-
rithm for material proportion design of asphalt mixture employing ML models. After the
gradation of aggregates for asphalt mixtures is determined, the mixture proportion includ-
ing asphalt content and additive parameters usually need to be optimized to balance the
competing multiple objectives for the best comprehensive physical performances subjected
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to several constraints like volumetric properties, pavement performances, etc. Since these
models between variables and objectives are not explicit expressions, the ML model based
on GPR is chosen to train the system model of these objectives and constraints for further
multi-objective problems. The next step is to use the metaheuristic algorithm based on
MOPSO for searching the global best solutions to solve the multi-objective optimization
(MOO) problem of asphalt mixture proportion with objectives and constraints modeled
by ML. Therefore, this study applies both ML methods and metaheuristic algorithms to
optimize the multi-objective problem of asphalt mixture proportions. Figure 1 shows the
structure of this study, in which the metaheuristic optimization process for asphalt mixture
proportion based on an ML model is described in Part I and two cases are presented
in Part II.
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2. Methodology
2.1. Definition for Multi-Objective Optimization (MOO) Problem

The MOO problem is generally regarded as a mathematical optimization problem
with multiple objective functions to be optimized simultaneously [31]. Mixture proportion
optimization involves determining specifications and contents of raw materials. Generally,
some objectives are used to evaluate the mechanical and pavement performances, such
as strength, stability, and so on. With the diversification of additives and modifiers,
competing objectives, such as additive contents and performances are introduced when
designing a proportion for road materials. At present, the mixture proportion optimization
methods involving only a single mechanical performance have gradually lost recognition.
Many researchers tried to construct multi-objective mathematical models to obtain better
mixture proportion schemes. However, as far as we know, there are few papers reported to
investigate a general optimization model of asphalt mixture proportion. Thus, the MOO
problem for mixture proportion is a complex combinatorial optimization problem with
more challenges.
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MOO problem could be defined to search the optimal set of input variables for
minimizing and/or maximizing multiple objectives simultaneously. A typical MOO math-
ematical formulation can be expressed as:

min/max F(x) = [ f1(x), f2(x), . . . , fm(x)]T

s.t.
gjmin ≤ gj(x) ≤ gjmax(j = 1, 2, . . . , p)

(1)

where x is the vector of design variables, x ∈ [x1, x2, . . . , x···]
T; F(x) = [ f1(x), f2(x), . . . , fm(x)]

T

denotes the objective function vector containing m objective functions; gj(x) and p represent
the constraint function and the number of constraints, respectively.

In general, a solution to the MOO problem in Equation (1) is known as a Pareto optimal
solution without degrading some objective values, which is considered equally efficient.
Thus, from different viewpoints, a set of Pareto optimal solutions could be found according
to the goals, that could satisfy the subjective preferences. Due to multiple Pareto optimal
solutions for MOO problems, these usually require a lot of evaluations. Therefore, some
methods are used to convert the original MOO problem into a single-objective optimization
problem by a weighted-average method as follows [32]:

F(x) =
m

∑
q=1

ωq
fq

fq∗
(2)

where ωq is the q-th weight coefficient; fq* is the normalized factor to the q-th objective function.
However, the above weighted-average method has some disadvantages. The optimal

solution by the method relies on a suitable weight coefficient [33]. Moreover, the scaling
coefficients are often chosen based on the ideal optimal solutions of each single optimization
problem which can be rather time-consuming with increase in the number of objectives.
It cannot find certain Pareto-optimal solutions in the case of a nonconvex objective space.
For the above reasons, this study aims to investigate a novel MOO method by combining
the GPR based on ML methods with PSO based on metaheuristic algorithms. The GPR
method is utilized as an optimizer for the objective functions, and the PSO algorithm is
adopted to search the optimal solution for MOO problems.

2.2. System Modeling Based on Machine Learning (ML) Method-Gaussian Process Regression (GPR)

A Gaussian process (GP) is a stochastic process, which consists of random variables
with normal distributions. Thus, the GP distribution is a joint distribution of any number
of random variables (X = [x1, x2, . . . , xn]T) [34]. From the function-space view, a GP is
denoted by a mean function µ(x) as well as covariance function k(x, x’), and as such, the GP
could be expressed in Equation (3) as follows:

f (x) ∼ GP
(
µ(x), k

(
x, x′

))
(3)

where µ(x) = E[ f (x)], k(x, x′) = E[( f (x) − µ(x))( f (x′) − µ(x′))], in which the mean
function is usually zero for notational simplicity. The covariance function is considered as
a crucial ingredient that defines nearness or similarity.

In GPR, the squared exponential (SE) covariance function is probably the most
commonly-used kernel, that corresponds to a Bayesian linear regression model. The
SE covariance function is expressed as follows:

k
(

x, x′
)
= σ2

f exp(− (x− x′)2

2l2 ) (4)

where the amplitude σf and characteristic length-scale l are two hyperparameters to model
a smooth rising trend.
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For the standard linear regression model with Gaussian noise, the Bayesian analysis is
written as follows:

y = f (x) + ε (5)

where x is the input vector, y is the observed value considering noise pollution, f is the
objective function, f (x) is the function value. It can be shown that y differs from f (x) by ε.
Here, suppose that ε follows an independent, uniformly Gaussian distribution (µ = 0, σ2

n),
it has the following distribution:

ε ∼ N(0, σ2
n) (6)

Subsequently, for multivariate input variables, the covariance function for the standard
linear regression model is expressed in Equation (7):

k
(

x, x
′
)
= σ2

f exp(−
n

∑
s=1

(xs − x′s)
2

2l2
s

) (7)

where n is the dimension of vector x (xs, xs’, in which s = 1, 2, . . . , n), ls is the characteristic
length-scale of the s-th input variable.

Assume a training sample set S = {(xi, yi), i = 1, 2, . . . , t)}, t is the number of the
training sample. According to the GP described in Equation (3), the function values in
the form of a vector is F = [ f (x1), f (x2), . . . , f (xt)], which abides by a joint Gaussian
distribution. The prior distribution of y can be described in Equation (8):

y ∼ N
(

0, K(x, x) + σ2
t It

)
(8)

where It is the identity vector of size t, K(x, x) donates the t × t order symmetric positive
definite covariance vector.

Subsequently, given a new test input x∗, the test function value f∗ is generated from
the joint posterior distribution by the corresponding mean and covariance vector. The joint
distribution between the observed values and predictive values can be written as follows:[

y
f∗

]
∼ N

(
0,

[
K(x, x) + σ2

t It K(x, x∗)
K(x∗, x) K(x∗, x∗)

] )
(9)

where K(x, x∗), K(x∗, x) and K(x∗, x∗) are covariance matrix calculated through Equation (7),
and here the expressions: K(x, x∗) = K(x∗, x)T .

Thus, by deriving the conditional distribution corresponding to Equation (9), the
posterior distribution of the test function value f∗ for GPR can be expressed as [35]:

f∗|x, y, x∗ ∼ N(
–
f∗, cov(f∗)) (10)

where, the mean value:
–
f∗ = K(x∗, x)[K(x, x) + σ2

t It]
−1

y (11)

the variance of f∗:

cov(f∗) = K(x∗, x∗)−K(x∗, x)[K(x, x) + σ2
t It]
−1

K(x, x∗) (12)

the mean value
–
f∗ is considered as a point estimate, and the variance cov(f∗) is used to

estimate the uncertainty. Figure 2 presents the graphical model for GPR.
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2.3. Search Information Updating Based on Metaheuristic Algorithm Adaptive Weight
Multi-Objective Particle Swarm Optimization (AWMOPSO)

The PSO algorithm proposed by Kennedy and Eberhart is a metaheuristic algorithm
in view of swarm intelligence inspired by the movement behaviour in a bird flock or fish
cluster [36]. PSO algorithms make few assumptions for the optimization problem and
can search a large candidate solution space. It has been widely applied in optimization
problems because of the simplicity and efficiency for gradient-free optimization algorithms.
In PSO algorithm, each particle (bird or fish) searches for food in a cooperative way and
learns from the experience of the swarm. Then, global collective behaviour emerges in the
swarm to locate the optimal position of food by sharing information among the swarm.
PSO algorithms try to improve candidate solutions in the corresponding search space for
optimizing a problem by iteration. The PSO process starts with a stochastically initialized
particle swarm as possible optimal solutions for a problem and every particle is represented
with locations as well as velocity. All position vectors would be assessed by the fitness
function, which could evaluate and judge a position [37].

Considering a swarm with p particles in an n-dimensional space, the position and ve-
locity of the i-th particle at t iteration are represented xt

i = (xi1, xi2, . . . , xin) and
vt

i = (vi1, vi2, . . . , vin), respectively. These points of velocity and position of the i-th particle
at t iteration can be updated and adjusted according to Equations (13) and (14). There are
three components for each particle’s movement at each iteration in a PSO algorithm, i.e.,
velocity update, individual cognition, and social learning.

vt+1
i = wvt

i + c1rt
1(pbesti − xt

i ) + c2rt
2(gbest− xt

i ) (13)

xt+1
i = xt

i + vt+1
i (14)

where vt+1
i and xt+1

i are the velocity and position of the i-th particle at (t + 1) iteration for
the n-th dimension.

For the first term of velocity update in Equation (13), w denotes the inertia weight
parameter determining how much the particles’ previous motion is preserved. In the
individual cognition term, an individual-cognition parameter c1 is a positive constant;
r1 is a random value within [0,1], avoiding premature convergences and increasing the
most likely global optima; pbesti represents the i-th particle’s own best position. As for the
third one (social learning) meaning that all particles in the swarm share the information
of the globally best point achieved (gbest), a social learning parameter c2 is also a positive
constant; r2 plays exactly the same role as r1. In general, set c1 = c2 = 2 for acceleration,
w = wmax − iter × (wmax − wmin)/itermax, the value of w decreases with the increase of
iteration times. Besides, the update for a particle’s velocity and position at t iteration is
presented in Figure 3.
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As mentioned above, PSO could effectively solve single optimization problems. Based
on PSO, MOPSO algorithm was developed for MOO problems. The performance of PSO
largely depends on its control parameters, in which the inertia weight parameter (w) is an
important parameter. A larger value of w is beneficial to improve the algorithm's global
search capability, while a smaller value of w will enhance the algorithm’s local search
capability. The MOPSO algorithm is a continuation of the PSO algorithm in effectively
solving single-objective problems. It adds non-dominated ideas to the search principle
of the optimal solution. The improved adaptive weight MOPSO (AWMOPSO) algorithm
considers the fitness of the overall particle, and establishes a new weight self-renewal
strategy [38]. The improved inertia weight is as follows:

w =

{
wmin − (wmax − wmin) × (J − Jmin)

(Javg − Jmin)
, J ≤ Javg

wmax, J > Javg
, (15)

where wmax and wmin are the maximum and minimum inertia weights, respectively; J is
the current fitness value of the particle; Javg and Jmin are the average and minimum fitness
value, respectively. Similarly, the AWMOPSO seeks the global optimal position according
to the positions of an individual particle and particle swarm. Several global optima exist
that constitute the Pareto front and the AWMOPSO collects all the non-dominated particles
into a repository. Finally, each particle selects its leader in the repository based on different
decisions. The flowchart of the proposed method is illustrated in Figure 4, which is the
integration AWMOPSO with GPR (i.e., GPR-AWMOPSO).
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Figure 4. The flowchart of the procedure of GPR-adaptive weight multi-objective particle swarm optimization (AWMOPSO):
(a) Experiments; (b) System model based on GPR; and (c) Search information based on MOPSO.

2.4. Choice Criteria for MOO Problems

The technique for order of preference by similarity to ideal solution (TOPSIS) is a
multi-criteria decision analysis method, which was originally developed by Ching-Lai
Hwang and Yoon [39,40]. The TOPSIS method compares and selects a set of alternatives by
normalising scores for each criterion and calculating the geometric distance between each
alternative and the ideal alternative, which is the best score in each criterion. Calculate
the separation measures, using the k-dimensional Euclidean distance. The separations
(d+i and d−i ) of each solution from the positive ideal solution and negative ideal solution
are given as Equations (16) and (17). The relative closeness coefficient (Ri) can be calculated
by Equation (18).

d+i = [
k

∑
j=1

(Fij − F+
j )

2
]

1
2

(16)

d−i = [
k

∑
j=1

(Fij − F−j )
2
]

1
2

(17)
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Ri =
d−i

d+i + d−i
(18)

where Fij is the normalized value; F+
j and F−j are the ideal solution and nadir solution,

respectively. By ranking the preference order, the solution with the highest value of
closeness coefficient (Ri) is the best solution.

3. Computational Examples and Analysis

To verify the proposed GPR-AWMOPSO optimization method, two tri-objective op-
timization cases for modified asphalt mixtures with different gradations are discussed.
The optimization results based on the traditional experimental design methods (i.e., RSM
and orthogonal experimental design) and the proposed GPR-AWMOPSO optimization
algorithm are compared.

3.1. Case Study I: Bi-Objective Optimization

A lot of research has shown that basalt fibre has a definite improvement influence on
the crack resistance of asphalt materials [41]. For basalt fibre-reinforced asphalt mixture,
the detailed preparation parameters are discussed and analyzed including fibre length
and its content as well as asphalt–aggregate ratio. At the same time, three preparation
parameters are optimized based on the volumetric and strength properties.

3.1.1. Data Description

In the optimization process of SMA-13 containing basalt fibre designed by RSM, raw
materials included SBS-modified asphalt, coarse and fine aggregates, mineral filler and
basalt fibre, whose basic physical properties were summarized in the previous study [16].
The experiment with three independent factors at three experimental levels was devised
according to the face-centered central composite RSM. The preparation parameters are
regarded as fibre content (X1) and its length (X2) as well as asphalt-aggregate ratio (X3);
and Marshall stability (MS) (Y1) and flow (FV) (Y2) are performance parameters, air voids
(VA) (Y3), voids in mineral aggregates (VMA) (Y4) and voids filled with asphalt (VFA) (Y5)
represent volumetric properties. The experimental design and outputs with 19 groups of
basalt fibre-reinforced asphalt mixtures are listed in detail in Table 1.

Table 1. Experimental design and outputs by response surface methodology (RSM) [16].

No.
Preparation Parameters Responses or Dependent Variables

X1 (%) X2 (mm) X3 (%) Y1 (kN) Y2 (mm) Y3 (%) Y4 (%) Y5 (%)

1 0.40 6 6.6 9.98 3.052 4.69 18.35 74.45
2 0.25 3 6.4 7.48 3.053 2.80 16.79 83.32
3 0.55 3 6.8 6.23 3.328 7.19 20.47 64.88
4 0.55 6 6.6 9.92 2.778 5.99 19.46 69.22
5 0.40 6 6.8 9.33 4.153 5.89 19.36 69.58
6 0.40 6 6.6 10.56 3.054 4.78 18.42 74.05
7 0.55 9 6.8 7.19 3.053 7.55 20.78 63.67
8 0.25 6 6.6 10.21 3.190 2.75 16.69 83.52
9 0.40 3 6.6 8.72 3.191 4.37 18.08 75.83

10 0.40 6 6.6 10.48 3.053 4.69 18.35 74.44
11 0.40 6 6.6 10.29 3.051 4.82 18.46 73.89
12 0.55 3 6.4 6.63 2.641 6.05 19.57 69.09
13 0.25 9 6.8 7.82 4.291 4.28 17.97 76.18
14 0.25 9 6.4 8.41 2.916 3.13 17.07 81.66
15 0.25 3 6.8 6.89 4.428 3.96 17.70 77.63
16 0.40 6 6.6 10.38 3.053 4.65 18.32 74.62
17 0.40 6 6.4 9.61 2.916 5.07 18.73 72.93
18 0.40 9 6.6 9.04 2.915 5.02 18.63 73.05
19 0.55 9 6.4 8.11 2.503 6.37 19.85 67.91
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3.1.2. MOO Problem Formulation for Basalt Fibre-Modified Asphalt Mixture

In this work, a typical proportion optimization for asphalt mixture is discussed. A
metaheuristic optimization model for asphalt mixture proportion based on an ML model is
presented to maximize physical performances and satisfy the requirements of volumetric
properties. Hereto, the mixture proportion problem is usually taken to be a complex
optimization problem.

(1) Objective Function
Following the Chinese specification JTG F40-2004, the targets of asphalt mixture

proportion optimization should not only meet the volumetric properties but also maximize
the strength performance and minimize cost. According to the modelled GPR of basalt
fibre-reinforced asphalt mixture, the objective function is calculated as follows:{

maxF1(X) = maxY1
minF2(X) = min(12X1 + 2.2X3)

(19)

where Y1 represents the Marshall stability (MS); F2(X) is the cost, the prices per kilogram of
basalt fibre and asphalt are 12 and 2.2, respectively.

(2) Constraints
Following the Chinese specification JTG F40-2004, the range constraints and vol-

umetric properties constraints for SMA-13 specimens reinforced with basalt fibre are
summarized in Tables 2 and 3, respectively. The corresponding constraint expressions are
written as: 

0.25 ≤ X1 ≤ 0.55
3 ≤ X2 ≤ 9

6.4 ≤ X3 ≤ 6.8
2 ≤ Y2 ≤ 5
3 ≤ Y3 ≤ 4

Y4 ≥ 17
75 ≤ Y5 ≤ 85

(20)

Table 2. Range constrains of input variables.

Input Variables Lower Bound Medium Upper Bound

X1 % 0.25 0.40 0.55
X2 mm 3 6 9
X3 % 6.4 6.6 6.8

Table 3. Volumetric and physical property constrains of output variables.

Output Variables Y1 Y2 Y3 Y4 Y5

Specification Maximize 2~5 3~4 ≥17 75~85
Unit kN mm % % %

3.1.3. Results of Asphalt Mixture Proportion Optimization Using GPR-AWMOPSO

(1) System Models Based on GPR
As mentioned above, GPR is adopted to model objective functions based on ML

methods, which would be trained using the collected data. There are three inputs and five
outputs, the whole dataset includes several groups selected randomly from 19 orthogonal
groups and is also separated into two datasets for training along with testing. Then we
can predict the volumetric and physical performances of asphalt mixture containing basalt
fibre from 25% of the selected dataset by using the training dataset from 75% of the selected
dataset randomly. Besides, the root-mean-square error (RMSE) in Equation (21) is selected
to assess the difference between observed values and predictive values and the squared
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correlation coefficient (R2) in Equation (22) is selected to evaluate the correlation between
these two values [42].

RMSE =

√
1
m

m

∑
i=1

(y∗i − yi)
2 (21)

R2 =

(
m
∑

i=1
(y∗i − y∗)(yi − y))

2

(
m
∑

i=1
(y∗i − y∗)2)(

m
∑

i=1
(yi − y)2)

(22)

where y∗i and yi denote the predictive and observed values, y∗ and y are the mean values
of the observed values and predictive values. Figure 5 shows the reliable results of GPR
model versus size of training dataset. It can be observed that the reliability of the GPR
model is better with the size of training dataset increasing. Therefore, in the following
study, the training dataset consisting of 8 groups would be selected randomly from the
experimental groups for the GPR model, which possesses a good prediction effect.
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The prediction results for the volumetric and physical performances of asphalt mixture
containing basalt fibre are listed in Table 4. Figure 6 shows the predictive values by the GPR
model versus the experimental values for training and testing sets. The regression analysis
indicates that the optimum GPR model was successful in learning the relationship between
the input and output variables. There are lower RMSE values and higher R2 values for
both training and testing datasets. It can be indicated that the GPR model can accurately
model the relationship between input and output variables. Thus, it could be confirmed
that the optimal GPR model has been well trained based on the comparison between the
volumetric and physical properties of training and testing datasets.

Table 4. Root-mean-square error (RMSE) and R2 values for volumetric and physical properties of
basalt fibre reinforced asphalt mixture.

Output Variables
RMSE R2

Training Testing Training Testing

Y1 0.242 0.145 0.984 0.992
Y2 0.174 0.134 0.865 0.988
Y3 0.096 0.154 0.996 0.995
Y4 0.087 0.133 0.995 0.994
Y5 0.135 0.154 0.996 0.996
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(2) Proportion Optimization Results for Basalt Fibre-Modified Asphalt Mixture using
GPR-AWMOPSO

According to the above AWMOPSO algorithm, the optimal solution can be obtained
for the proportion of asphalt mixture containing basalt fibre. The bi-objective modified
asphalt mixture optimization results are shown in Figure 7a. GPR is used as the objective
function for modelling proportion design of asphalt mixture. The Pareto front based
on mechanical performance (Marshall stability) and cost is obtained. These points are
distributed within a reasonable range, showing a good effectiveness of GPR-AWMOPSO.
Meanwhile, it is observed that the asphalt mixture cost would increase with the increasing
of mechanical performance. In total, several non-dominated solutions (the optimal mixture
proportions) are selected. In Figure 7a, the solution with higher mechanical performance on
the Pareto front is more expensive. In general, the optimal solution depends on the mixture
design consideration. According to the closeness coefficient of TOPSIS on the Pareto front,
the point A has the highest TOPSIS score. The solution B on the Pareto front is more
expensive but has a higher mechanical performance, whereas the solution C has a lower
mechanical performance with a correspondingly lower cost. It also shows that the solution
A by TOPSIS has an intermediate cost and Marshall stability compared with the solutions B
and C. With the mechanical performance as the primary goal, the point B marked by a red
five-pointed star will be the best option to achieve the maximum mechanical performance.
While minimizing cost is the main objective, the point C marked by a green five-pointed
star will be the best option.

To verify the proposed GPR-AWMOPSO algorithm, the optimized proportion of
asphalt mixture is compared with the results of RSM, traditional MOPSO [43–45] and mesh-
adaptive direct search (MADS) [46–48]. When the objective is to achieve the maximum
Marshall stability, the three inputs and five outputs variables are summarized in Table 5.
From Table 5, it can be found that the optimal results yield higher mechanical properties
without a noticeable increase in the mixture proportions. Meanwhile, these results are
well satisfied with the constraints shown in Table 3 following the Chinese specification
JTG F40-2004.

Table 5. Comparison of optimization results among RSM [16], traditional multi-objective particle swarm optimization
(MOPSO), mesh-adaptive direct search (MADS) and GPR-adaptive weight multi-objective particle swarm optimization
(AWMOPSO) algorithm.

Optimization
Methods

Input Variables Output Variables

X1 (%) X2 (mm) X3 (%) Y1 (kN) Y2 (mm) Y3 (%) Y4 (%) Y5 (%)

RSM [16] 0.34 6.41 6.57 10.49 3.113 4 17.7 77.43
Traditional MOPSO 0.3472 6 6.62 10.51 3.164 4 17.9 77.67

MADS 0.3529 6 6.62 10.53 3.169 4 18.1 77.88
GPR-AWMOPSO 0.3547 6 6.61 10.55 3.181 4 18.1 77.91

Moreover, Figure 7b shows the swarm maximum value of the objective function (at the
swarm best position) versus iteration for traditional MOPSO, MADS and GPR-AWMOPSO.
After several numbers of iteration, it can be found that a significant increase in the maxi-
mum objective function value occurs, indicating that both traditional MOPSO, MADS and
GPR-AWMOPSO algorithms are efficient in the proportion optimization of composite mod-
ified asphalt mixture. The traditional MOPSO, MADS and GPR-AWMOPSO algorithms
also possess good precision. As for calculation speed, the proposed GPR-AWMOPSO in
this paper starts to converge rapidly after about 6 iterations, while the convergence rate of
the traditional MOPSO is slightly slower. In contrast, the MADS method also has better
results. The average iteration number of the MADS method is slightly larger than that of
GPR-AWMOPSO, while the convergence rate of GPR-AWMOPSO in this paper is stable
and fast. The optimal solution generally relies on the considerations of mixture design.
Compared with the RSM design and traditional MOPSO, the proposed GPR-AWMOPSO



Appl. Sci. 2021, 11, 835 14 of 26

algorithm has higher mechanical performances. When the main objective is maximizing
mechanical performances, the proposed GPR-AWMOPSO algorithm can be considered as
the best option.
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function value (F1) versus iteration.

(3) Performance Verification
To assess the comprehensive pavement performances of the asphalt mixture contain-

ing basalt fibre designed using RSM and the proposed GPR-AWMOPSO algorithm, the
permanent deformation resistance, crack resistance as well as moisture stability were con-
ducted at high and low temperatures. For the two groups of designed mixture proportions,
three replicate specimens were prepared for the rutting experiment at 60 ◦C, splitting exper-
iment at −10 ◦C as well as an immersion Marshall experiment and freeze–thaw splitting
experiment, and the corresponding results are illustrated in Figure 8. It can be observed
that compared with the specimens designed by RSM, the dynamic stability of specimens
designed by GPR-AWMOPSO increases by 3.59%, the stiffness modulus increases by 2.43%,
and the residual Marshall stability and tensile strength ratio (TSR) increase by 3.48% and
2.16%, respectively. The comparison results verify that the proposed GPR-AWMOPSO
algorithm is the best option for maximizing the performances of basalt fibre reinforced
asphalt mixture.
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3.2. Case Study II: Tri-Objective Optimization

Diatomite has been proved to dramatically improve the high-temperature performance
of asphalt mixture [49–52]. Hence, the incorporation of diatomite and basalt fibres would
comprehensively enhance the resistance to high-temperature rutting, low-temperature
cracking as well as moisture stability of asphalt mixture. There are four basic components
of asphalt mixture, i.e., asphalt, mineral, diatomite, basalt fibre. With the selected gradation,
it needs to take into account both volumetric properties and pavement performances at
high and low temperatures when the proportions of asphalt mixture with diatomite and
basalt fibre are studied.

3.2.1. Data Description

Raw materials for asphalt mixture with diatomite and basalt fibre included A-90#
asphalt, coarse and fine aggregates, mineral filler, diatomite, basalt fibre. The corresponding
technical properties as well as origins have been illustrated in the previous studies, which
could satisfy the requirements of the Chinese specification JTG F40-2004. In this study,
Marshall cylinder specimens were prepared following JTG E20-2011, in which the median
gradation of AC-13 was selected.

In the previous study [53], the orthogonal experiment L16 (43) was designed as a three-
factor and four-level experiment. The diatomite content (X1), basalt fibre content (X2), and
asphalt–aggregate ratio (X3) were regarded as orthogonal input variables; VA (Y1), VFA (Y2),
VMA (Y3), MS (Y4) and splitting strength at −10 ◦C (Sb, Y5) were used as output variables.
These 16 designed groups of asphalt mixture specimens were tested and the orthogonal
experimental results including volumetric properties as well as high-temperature and
low-temperature performances are listed in Table 6.



Appl. Sci. 2021, 11, 835 16 of 26

Table 6. Orthogonal results of asphalt mixtures containing diatomite and basalt fibre [53].

No.
Preparation Parameters Responses or Dependent Variables

X1 (%) X2 (%) X3 (%) Y1 (%) Y2 (%) Y3 (%) Y4 (kN) Y5 (MPa)

1 5 0.2 4.9 4.02 74.01 15.47 12.46 2.81
2 5 0.3 5.2 3.85 75.85 15.94 13.38 3.50
3 5 0.4 5.5 3.80 76.99 16.51 13.27 3.58
4 5 0.5 5.8 3.99 76.93 17.30 12.40 3.25
5 10 0.2 5.5 3.44 78.76 16.20 13.32 3.89
6 10 0.3 5.8 3.36 79.94 16.75 13.06 3.91
7 10 0.4 4.9 4.77 70.40 16.11 13.27 3.69
8 10 0.5 5.2 4.76 71.55 16.73 13.35 3.66
9 15 0.2 5.8 3.73 78.14 17.06 12.67 3.57
10 15 0.3 5.5 4.39 74.20 17.02 14.02 4.30
11 15 0.4 5.2 4.21 74.06 16.23 13.57 3.82
12 15 0.5 4.9 5.86 65.67 17.07 13.14 3.56
13 20 0.2 5.2 4.58 72.36 16.57 12.85 3.22
14 20 0.3 4.9 5.39 67.63 16.65 13.36 3.48
15 20 0.4 5.8 4.49 74.61 17.68 12.65 3.56
16 20 0.5 5.5 5.49 69.41 17.95 13.07 3.70

3.2.2. MOO Problem Formulation for Diatomite-Basalt Fibre Composite Modified
Asphalt Mixture

(1) Objective Function
Considering the extremely variable climate in the seasonal frozen area in northeast

China, high- and low-temperature performances are treated as optimization targets. The
objective functions for asphalt mixture containing diatomite and basalt fibre are modelled
using GPR based on ML methods. The objective functions of high- and low-temperature
performances as well as costs are calculated by the following equations:

maxF1(X) = maxY4
maxF2(X) = maxY5

minF3(X) = min(1.35X1 + 12X2 + 2.2X3)
(23)

where Y4 (MS) represents the high-temperature performance and Y5 (Sb) represents the
low-temperature performance; F3(X) is the cost, the prices per kilogram of diatomite, basalt
fibre and asphalt are 1.35, 12 and 2.2, respectively.

(2) Constraints
Similarly, following JTG F40-2004 and the previous study [53], the range constraints

and volumetric properties constraints for AC-13 specimens modified by diatomite and
basalt fibre are summarized in Tables 7 and 8, respectively. The corresponding constraint
expressions are written as: 

5 ≤ X1 ≤ 20
0.2 ≤ X2 ≤ 0.5
4.9 ≤ X3 ≤ 5.8

3 ≤ Y1 ≤ 6
65 ≤ Y2 ≤ 75

Y3 ≥ 14
Y4 ≥ 8

(24)

Table 7. Range constrains of input variables.

Input Variables Lower Bound Upper Bound

X1 % 5 20
X2 % 0.2 0.5
X3 % 4.9 5.8
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Table 8. Volumetric and physical property constrains of the output variables.

Output Variables Y1 Y2 Y3 Y4 Y5

Specification 3~6 65~75 ≥14 ≥8 (Maximize) Maximize
Unit % % % kN MPa

3.2.3. Results of Asphalt Mixture Proportion Optimization using GPR-AWMOPSO

(1) System Models Based on GPR
For the GPR system model, 12 groups are selected randomly from 16 orthogonal

groups and also divided into training and testing dataset. Then we can predict the volu-
metric and physical properties of diatomite and basalt fibre composite-modified asphalt
mixture from 25% of the selected dataset by using the training dataset from 75% of the
selected dataset randomly.

The RMSE and R2 can be calculated using Equations (21) and (22), and the prediction
results for the volumetric and physical properties of asphalt mixture containing diatomite
and basalt fibre are shown in Table 9. Figure 9 shows the predictive values by the GPR
model versus the experimental values for training and testing sets. The regression analysis
indicates that the optimal GPR model was successful in learning the relationship between
the input and output variables. There are lower RMSE values and higher R2 values for
both training and testing datasets. It can be indicated that the GPR model can accurately
model the relationship between input and output variables. Thus, it could be confirmed
that the optimal GPR model has been well trained based on the comparison between the
volumetric and physical properties of training and testing datasets.

Table 9. RMSE and R2 for volumetric and physical properties of asphalt mixture.

Output Variables
RMSE R2

Training Testing Training Testing

Y1 0.209 0.170 0.938 0.849
Y2 0.959 0.914 0.887 0.959
Y3 0.176 0.177 0.937 0.991
Y4 0.160 0.132 0.804 0.886
Y5 0.108 0.102 0.864 0.922
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(2) Proportion Optimization Results for Modified Asphalt Mixture Based on GPR-
AWMOPSO

According to the above AWMOPSO algorithm, the optimal solution can be obtained
for the proportion of asphalt mixture containing diatomite and basalt fibre. The tri-objective
modified asphalt mixture optimization results are shown in Figure 10a. GPR is also used
as the objective function for modelling proportion design of asphalt mixture, The Pareto
front based on mechanical performances (i.e., Marshall stability and splitting strength at
−10 ◦C) and cost could be obtained. It is observed that these points are distributed within
a reasonable range, showing a good effectiveness of GPR-AWMOPSO. Meanwhile, it is
seen that the modified asphalt mixture cost would increase with increasing mechanical
performance. In total, several non-dominated solutions (the optimal mixture proportions)
are selected. In Figure 10a, the solution with higher mechanical performance on the
Pareto front is more expensive. In general, the optimal solution depends on the mixture
design consideration. Solution B on the Pareto front is more expensive but has higher
mechanical performances, whereas solution C has lower mechanical performances with
a correspondingly lower cost. Point A on the Pareto front has the highest TOPSIS score.
It also shows that the solution A by TOPSIS has an intermediate cost and performance
responses compared with solutions B and C. With the mechanical performances as the
primary goal, point C marked by a red cube will be the best option to achieve the maximum
mechanical performances.
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To verify the proposed GPR-AWMOPSO algorithm, the optimized proportion of as-
phalt mixture is compared with the results of the orthogonal design, traditional MOPSO
and MADS. The three inputs and five outputs variables are summarized in Table 10.
From Table 10, it can be found that the optimal results yield higher high-temperature
and low-temperature physical performances without a noticeable increase in the mixture
proportions. Meanwhile, these results are satisfied well with the constraints following JTG
F40-2004. The optimal solution generally relies on the considerations of mixture design.
Compared with the traditional orthogonal design, traditional MOPSO and MADS, the
proposed GPR-AWMOPSO algorithm has higher physical performances. When maximiz-
ing performances is the main objective, the proposed GPR-AWMOPSO algorithm is the
best option.
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Table 10. Comparison of optimization results among the traditional orthogonal design [53], traditional MOPSO, MADS and
GPR-AWMOPSO algorithm.

Optimization
Methods

Input Variables Output Variables

X1 (%) X2 (%) X3 (%) Y1 (%) Y2 (%) Y3 (%) Y4 (kN) Y5 (MPa)

Orthogonal 14 0.32 5.45 4.25 74.68 16.78 13.30 3.86
Traditional MOPSO 14.234 0.36 5.57 4.23 74.76 16.75 13.91 4.13

MADS 14 0.34 5.52 4.24 74.87 16.80 14.06 4.24
GPR-AWMOPSO 13.9 0.34 5.51 4.22 75.02 16.87 14.18 4.28

Figure 10b displays the swarm maximum value of the objective function (at the swarm
best position) versus iteration for traditional MOPSO, MADS and GPR-AWMOPSO. After
several numbers of iteration, it can be found that a significant increase in the maximum
objective function value occurs, indicating that both traditional MOPSO, MADS and
GPR-AWMOPSO algorithms are efficient and possess good precision in the proportion
optimization of composite modified asphalt mixture. In terms of calculation speed, the
convergence rates of GPR-AWMOPSO and MADS are similar. Moreover, it is observed that
the optimization rate based on the proposed GPR-AWMOPSO has a faster convergence
rate compared with the traditional MOPSO.

(3) Performance Verification
The high-temperature permanent deformation resistance, low-temperature crack

resistance as well as moisture stability were also conducted to evaluate the comprehensive
pavement performances of composite modified asphalt mixture designed by the orthogonal
method and the proposed GPR-AWMOPSO algorithm. For the two groups of designed
mixture proportions, three replicate specimens were prepared for the rutting experiment
at 60 ◦C, splitting experiment at −10 ◦C as well as immersion Marshall and freeze–thaw
splitting experiments, and the corresponding results are shown in Figure 11. It can be
observed that compared with the specimens designed by the orthogonal method, the
dynamic stability of specimens designed by GPR-AWMOPSO increases by 6.03%, the
tensile strain increases by 9.61%, and the residual Marshall stability and tensile strength
ratio (TSR) increase by 1.02% and 1.18%, respectively. The comparison results verify that the
proposed GPR-AWMOPSO algorithm is the best option for maximizing the performances
of composite modified asphalt mixture.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 21 of 27 
 

verify that the proposed GPR-AWMOPSO algorithm is the best option for maximizing 

the performances of composite modified asphalt mixture. 

 
 

(a) (b) 

Figure 11. Performance verification between the orthogonal experimental design and GPR-AWMOPSO algorithm: (a) 

high- and low-temperature performances; and (b) moisture stability. 

3.3. Case Study III: Optimization with Four Objectives 

The existing literature shows that rubber aggregate and basalt fibre have been 

proved to help modify concrete [54]. Waste rubber materials can be recycled to reduce 

environmental pollution. On the other hand, it can also improve the performance of 

concrete. 

3.3.1. Data Description 

The rubber and basalt fibre modified concrete was also optimized by using RSM. 

Based on the Box Behnken design, the experiment with three independent factors at 

three experimental levels was designed. The preparation parameters are regarded as the 

water–binder ratio (X1) and basalt fibre content (X2) as well as rubber content (X3); and 

slump (Y1), flexural strength (Y2) and compressive strength (Y3) represent response var-

iables. The experimental design and outputs with 17 groups of rubber and basalt fi-

bre-modified concretes are listed in detail in the study [54]. 

3.3.2. MOO Problem Formulation for Rubber-Basalt Fibre Composite Modified Concrete 

(1) Objective Function 

According to the requirements of rubber and basalt fibre-modified concrete, the ob-

jective functions are calculated as follows: 

1

2 2

3 3

4 2 3

max ( ) max

max ( ) max

max ( ) max

min ( ) min(12 1.6 )

 






  

1F X Y

F X Y

F X Y

F X X X

 (25) 

(2) Constraints 

Following the previous study [54], the range constraints for concretes modified by 

rubber and basalt fibre are summarized and written as: 

1

2

3

0.39 0.49

2 8

10 30

  


 
  

X

X

X

 (26) 

Figure 11. Performance verification between the orthogonal experimental design and GPR-AWMOPSO algorithm: (a) high-
and low-temperature performances; and (b) moisture stability.
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3.3. Case Study III: Optimization with Four Objectives

The existing literature shows that rubber aggregate and basalt fibre have been proved
to help modify concrete [54]. Waste rubber materials can be recycled to reduce environ-
mental pollution. On the other hand, it can also improve the performance of concrete.

3.3.1. Data Description

The rubber and basalt fibre modified concrete was also optimized by using RSM.
Based on the Box Behnken design, the experiment with three independent factors at three
experimental levels was designed. The preparation parameters are regarded as the water–
binder ratio (X1) and basalt fibre content (X2) as well as rubber content (X3); and slump
(Y1), flexural strength (Y2) and compressive strength (Y3) represent response variables.
The experimental design and outputs with 17 groups of rubber and basalt fibre-modified
concretes are listed in detail in the study [54].

3.3.2. MOO Problem Formulation for Rubber-Basalt Fibre Composite Modified Concrete

(1) Objective Function
According to the requirements of rubber and basalt fibre-modified concrete, the

objective functions are calculated as follows:
maxF1(X) = maxY1
maxF2(X) = maxY2
maxF3(X) = maxY3

minF4(X) = min(12X2 + 1.6X3)

(25)

(2) Constraints
Following the previous study [54], the range constraints for concretes modified by

rubber and basalt fibre are summarized and written as:
0.39 ≤ X1 ≤ 0.49

2 ≤ X2 ≤ 8
10 ≤ X3 ≤ 30

(26)

3.3.3. Results of Concrete Mix Proportion Optimization using GPR-AWMOPSO

(1) System Models Based on GPR
For the GPR system model, 12 groups are selected randomly from 17 groups of RSM

experimental design and also divided into training and testing dataset. Then we can
predict the performance properties of rubber and basalt fibre composite modified concrete
from 25% of the selected dataset by using the training dataset from 75% of the selected
dataset randomly.

Figure 12 shows the predictive values by the GPR model versus the experimental
values for training and testing sets. The regression analysis indicates that the optimal
GPR model with lower RMSE values and higher R2 values was successful in learning the
relationship between the input and output variables. It can be indicated that the GPR
model can accurately model the relationship between input and output variables, which
could be used for the performance prediction of rubber and basalt fibre modified concrete.



Appl. Sci. 2021, 11, 835 22 of 26

Appl. Sci. 2021, 11, x FOR PEER REVIEW 22 of 27 
 

3.3.3. Results of Concrete Mix Proportion Optimization using GPR-AWMOPSO 

(1) System Models Based on GPR 

For the GPR system model, 12 groups are selected randomly from 17 groups of RSM 

experimental design and also divided into training and testing dataset. Then we can 

predict the performance properties of rubber and basalt fibre composite modified con-

crete from 25% of the selected dataset by using the training dataset from 75% of the se-

lected dataset randomly. 

Figure 12 shows the predictive values by the GPR model versus the experimental 

values for training and testing sets. The regression analysis indicates that the optimal 

GPR model with lower RMSE values and higher R2 values was successful in learning the 

relationship between the input and output variables. It can be indicated that the GPR 

model can accurately model the relationship between input and output variables, which 

could be used for the performance prediction of rubber and basalt fibre modified con-

crete. 

  
(a) (b) 

 
(c) 

Figure 12. Comparison of the predictive values by GPR versus the experimental values: (a) Y1; (b) Y2; and (c) Y3. 

(2) Proportion Optimization Results Based on GPR-AWMOPSO 

According to the above AWMOPSO algorithm, the optimal solution can be obtained 

for the proportion of concretes modified by rubber and basalt fibre. The modified con-

crete optimization results are shown in Figure 13. GPR is used as the objective function 

for modelling proportion design of asphalt mixture. The Pareto front based on response 

Figure 12. Comparison of the predictive values by GPR versus the experimental values: (a) Y1; (b) Y2; and (c) Y3.

(2) Proportion Optimization Results Based on GPR-AWMOPSO
According to the above AWMOPSO algorithm, the optimal solution can be obtained

for the proportion of concretes modified by rubber and basalt fibre. The modified con-
crete optimization results are shown in Figure 13. GPR is used as the objective function
for modelling proportion design of asphalt mixture. The Pareto front based on response
variables and cost is obtained. These points are distributed within a reasonable range,
showing a good effectiveness of GPR-AWMOPSO. In total, several non-dominated so-
lutions (the optimal mixture proportions) are selected. In Figure 13, the solution with
higher mechanical performance on the Pareto front is more expensive. In general, the
optimal solution depends on the mixture design consideration. According to the closeness
coefficient of TOPSIS on the Pareto front, the point A has the highest TOPSIS score. So-
lution B on the Pareto front is more expensive and has higher compression strength and
flexural strength but lower slump. However, solution C has lower compression strength
and flexural strength with a correspondingly lower cost. It also shows that solution A by
TOPSIS has an intermediate cost and response variables compared with solutions B and C.
With the mechanical performance including compression strength and flexural strength
as the primary goal, point B will be the best option to achieve the maximum mechanical
performance. While when minimizing cost is the main objective, point C will be the best
option. Moreover, Table 11 also summarizes the comparison results of three inputs and
three outputs variables. From Table 10, compared with the results of the orthogonal de-
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sign, traditional MOPSO and MADS, it can be found that the optimal results yield higher
mechanical performance including compression strength and flexural strength.
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Table 11. Comparison of optimization results among the traditional orthogonal design [53], traditional MOPSO, MADS and
GPR-AWMOPSO algorithm.

Optimization
Methods

Input Variables Output Variables

X1 X2 (kg/m3) X3 (%) Y1 (mm) Y2 (MPa) Y3 (MPa)

Orthogonal 0.39 4.56 10 64 39.96 3.8
Traditional MOPSO 0.3978 4.5762 10.6711 65.1515 38.7927 3.8367

MADS 0.4012 4.5886 10.7919 65.5083 40.0506 3.9598
GPR-AWMOPSO 0.4049 4.5802 10.6861 65.3504 40.2792 3.9766
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4. Conclusions

In this study, a novel AWMOPSO algorithm based on GPR is proposed for the pro-
portion design and optimization of asphalt mixture, which could be adopted to deal with
multi-variable, multi-level problems with multiple constraints. The objective function
based on GPR was established and evaluated in terms of RMSE and R2. The results showed
that the optimal GPR can accurately model the relationship between input and output vari-
ables. The well trained GPR model was then applied to the AWMOPSO design of asphalt
mixture (SMA-13) containing basalt fibre as well as asphalt mixture (AC-13) containing
diatomite and basalt fibre. The proportions of modified asphalt mixtures were considered
as input variables and the volumetric and physical properties were output variables. After
the optimization, the comprehensive pavement performances were enhanced in terms
of the high-temperature permanent deformation resistance, low-temperature crack resis-
tance as well as moisture stability. Therefore, the proposed GPR-AWMOPSO algorithm
is regarded as the best option and efficient for maximizing the performances of modified
asphalt mixture.

The main objective of this study is the verification of the GPR-AWMOPSO algo-
rithm for the prediction of volumetric and physical properties and mixture proportion
optimization. The GPR-AWMOPSO algorithm has several advantages over traditional
laboratory-based experimental methods:

(1) The GPR-AWMOPSO algorithm can be used to develop the objective functions with-
out knowing the explicit relationships between variables and objectives.

(2) The selected metaheuristic algorithm could solve the problem and find the global
optimal solution for multiple competing objectives.

(3) The GPR-AWMOPSO algorithm has higher accuracy to balance the competing objec-
tives with the ML model as objective functions, which can serve as guidance for the
proportion optimization design of asphalt mixture.

(4) The GPR-AWMOPSO algorithm has advantages of less computational time and fewer
samples to avoid the limitation that the traditional experimental design method
cannot effectively deal with lots of variables and levels. In addition, the proposed
GPR-AWMOPSO algorithm can be extended to other practical design problems.
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