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Transverse momentum distributions of deuterons and antideuterons in Au+Au collisions at
ffiffiffiffiffiffiffi
sNN

p = 14:5, 62.4, and 200GeV with
different centrality are studied in the framework of the multisource thermal model. Transverse momentum spectra are conformably
and approximately described by the Tsallis distribution. The dependence of parameters (average transverse momenta, effective
temperature, and entropy index) on event centrality is obtained. It is found that the parameters T increase and q decrease with
increase of the average number of particles involved in collisions, which reveals the transverse excitation degree increases with
collision centrality.

1. Introduction

The study of strongly interacting matter at extreme tempera-
tures and densities is provided a chance by heavy ion colli-
sions at ultrarelativistic energies [1–5]. The production
mechanism of nuclei in ultrarelativistic heavy ion collisions
deserves more investigation since it may give important mes-
sage on the quantum chromodynamics (QCD) phase transi-
tion from quark-gluon plasma (QGP) to hadron gas (HG) [6,
7]. The RHIC is scheduled to run at the energies which are
around the critical energy of phase transition from hadronic
matter to QGP [8]. The theoretical study of nuclei and anti-
nuclei has been undertaken for many years, for example,
the thermal model and coalescence model [9–13]. In particu-
lar, the study of transport phenomena is major important to
the understanding of many fundamental properties [14]. The
spectra of transverse momentum of particles produced in
high energy collisions are of high interest as soon as they pro-
vide us with an important information of the kinetic freeze-
out state of the interacting system [15]. At the stage of kinetic
freeze-out, the effective temperature is not a real temperature,
and it describes the sum of excitation degree of the interact-
ing system and the effect of transverse flow [16].

In this paper, using the Tsallis distribution [17–19] in the
multisource thermal model to simulate the transverse
momentum distributions of (anti-)deuterons in Au+Au col-
lisions at RHIC, we compare them with experiment data
taken from the STAR Collaboration [20]. The main purpose
of this work is to extract the information on effective temper-
ature, because it allows us to extract the kinetic freeze-out
temperature.

2. The Model and Method

The model used in the present work is the multisource ther-
mal model [21–23]. In this model, many emission sources are
formed in high-energy nucleus-nucleus collisions. The differ-
ent distributions can describe the emission sources and par-
ticle spectra, such as the Tsallis distribution, the standard
(Boltzmann, Fermi-Dirac, and Bose-Einstein) distributions,
the Tsallis+standard distributions [24–29], and the Erlang
distribution [21]. The Tsallis distribution can be described
by two or three standard distributions.

The experimental data of the transverse momentum
spectrum of the particles are fitted by using the Tsallis distri-
bution which can describe the temperature fluctuation in a
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few sources to give an average value. The Tsallis distribution
has many function forms [17–19, 24–31]. In the rest frame of
a considered source, we choose a simplified form of the joint
probability density function of transverse momentum (pT)
and rapidity (y) [8],

f pT , yð Þ∝ d2N
dydpT

= gV

2πð Þ2 pT
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2T +m2

0

q
cosh y

× 1 + q − 1
T

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2T +m2

0

q
cosh y − μ

� �� �−q/ q−1ð Þ
:

ð1Þ

Here,N is the particle number, g is the degeneracy factor,
V is the volume of emission sources,m0 is the rest mass of the
studied particle, T is the temperature which describes aver-
agely a few sources (local equilibrium states), q is the entropy
index which describes the degree of nonequilibrium among
different states, and μ is the chemical potential which is
related to

ffiffiffiffiffiffiffi
sNN

p
[32]. In the RHIC energy region, the values

of μ are shown in Table 1 [33]. We can extract the values of
T , q, and V from reproducing the particle spectra, where T
and q are fitted independently for the studied particle and
V is related to other parameters.

The Monte Carlo distribution generating method is used
to obtain pT . Let r1 denote the random numbers distributed
uniformly in ½0, 1�. A series of values of pT can be obtained by

ðpT
0
f pT pTð ÞdpT < r1 <

ðpT+dpT
0

f pT pTð ÞdpT : ð2Þ

Here, f pT is the transverse momentum probability den-
sity function which is an alternative representation of the
Tsallis distribution as follows:

f PT
pTð Þ = 1

N
dN
dpT

=
ðymax

ymin

f pT , yð Þdy, ð3Þ

where ymax and ymin are the maximum and minimum rapid-
ity, respectively.

Under the assumption of isotropic emission in the source
rest frame, we use the Monte Carlo method to acquire the
polar angle:

θ = 2 arcsin ffiffiffiffi
r2

p
: ð4Þ

Here, r2 denotes the random numbers distributed uni-
formly in ½0, 1�. Thus, we can obtain a series of values of
momentum and energy due to the momentum p = pT /sin
θ and the energy E =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 +m2

0
p

. Therefore, the corre-
sponding values of rapidity can be obtained according to
the definition of rapidity.

3. Results and Discussion

3.1. Transverse Momentum Spectra. Figure 1 demonstrates
midrapidity (jyj < 0:3) transverse momentum spectra for
deuterons in Au+Au collisions at

ffiffiffiffiffiffiffi
sNN

p = 14:5GeV for 0-
10%, 10-20%, 20-40%, 40-60%, and 60-80% centralities.
The symbols represent the experimental data of STAR
Collaboration [20]. The solid lines are our calculated results
fitted by using the Tsallis distribution based on eq. (1) in
the region of midrapidity. The values of the related param-
eters T and q are given in Table 2 along with the χ2/dof
(χ2 and number of degree of freedom). It is found that
the calculations of the Tsallis distribution are in keeping
with the experimental data well.

In Figures 2 and 3, the curves and symbols are similar to
Figure 1. Figure 2 demonstrates midrapidity (∣y∣ < 0:3) trans-
verse momentum spectra for deuterons in Au+Au collisions
at

ffiffiffiffiffiffiffi
sNN

p = 200GeV for 0-10%, 10-20%, 20-40%, 40-60%, and
60-80% centralities. The values of the related parameters T
and q are given in Tables 3 and 4 along with the χ2/dof . It
is found that the calculations of the Tsallis distribution are
in keeping with the experimental data well.

In Figures 4–6 demonstrates midrapidity (jyj < 0:3) trans-
verse momentum spectra for antideuterons in Au+Au colli-
sions at

ffiffiffiffiffiffiffi
sNN

p = 14:5, 62.4, and 200GeV for 0-10%, 10-20%,
20-40%, 40-60%, and 60-80% centralities. The curves and sym-
bols are similar to Figure 1. One can see that the calculations
also can describe approximately the experimental data of anti-
deuterons with different centrality intervals of event. The values
of the related parameters T and q are given in Tables 2–4.

3.2. Average Transverse Momenta. Figure 7 presents the cen-
trality dependence of deuterons and antideuterons average
transverse momenta (hpTi) at the midrapidity (∣y∣ < 0:3) forffiffiffiffiffiffiffi
sNN

p = 14:5, 62.4, and 200GeV. The hollow symbols are
the experiment data taken from the Figures 1–6, and the solid

Table 1: Values of μ corresponding to the curves in Au+Au
collisions at

ffiffiffiffiffiffiffi
sNN

p = 14:5GeV, ffiffiffiffiffiffiffi
sNN

p = 62:4GeV, and ffiffiffiffiffiffiffi
sNN

p = 200
GeV for 0-10%, 10-20%, 20-40%, 40-60%, and 60-80%
centralities.

ffiffiffiffiffiffiffi
sNN

p
(GeV) Cross section μ (MeV)

14.5

0-10% 288:9 ± 12:9
10-20% 284:9 ± 12:9
20-40% 278:7 ± 12:8
40-60% 256:0 ± 12:4
60-80% 227:3 ± 1:08

62.4

0-10% 66:1 ± 5:3
10-20% 65:4 ± 5:2
20-40% 60:7 ± 5:2
40-60% 54:1 ± 5:2
60-80% 44:6 ± 5:9

200

0-10% 28:4 ± 5:5
10-20% 27:7 ± 5:1
20-40% 27:4 ± 4:9
40-60% 22:9 ± 4:9
60-80% 18:2 ± 4:5
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Figure 1: Deuteron transverse momentum spectra in Au+Au collisions at
ffiffiffiffiffiffiffi
sNN

p = 14:5GeV for 0-10%, 10-20%, 20-40%, 40-60%, and 60-
80% centralities. Calculations are shown by the solid lines. Experimental data taken from the STAR Collaboration [20] are represented by
the symbols.

Table 2: Values of T , q, and χ2/dof corresponding to the curves in Au+Au collisions at
ffiffiffiffiffiffiffi
sNN

p = 14:5GeV for 0-10%, 10-20%, 20-40%, 40-
60%, and 60-80% centralities. The “Ratios” is the average ratios of experimental data to model.

Figure Type 1 Type 2 T (GeV) q χ2/dof Ratios

Figure 1 d

0-10% 0:507 ± 0:002 1:125 ± 0:017 0.055 0.805

10-20% 0:487 ± 0:011 1:145 ± 0:166 0.053 0.742

20-40% 0:467 ± 0:054 1:165 ± 0:084 0.119 0.788

40-60% 0:427 ± 0:008 1:185 ± 0:045 0.150 0.848

60-80% 0:407 ± 0:001 1:205 ± 0:007 0.639 1.191

Figure 4 �d

0-10% 0:507 ± 0:001 1:105 ± 0:001 0.564 0.884

10-20% 0:487 ± 0:001 1:125 ± 0:001 0.239 1.005

20-40% 0:447 ± 0:001 1:145 ± 0:001 0.331 0.939

40-60% 0:387 ± 0:001 1:165 ± 0:001 0.619 0.914

60-80% 0:347 ± 0:001 1:185 ± 0:001 1.508 0.960
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symbols are the calculations of the Tsallis distribution. The
calculations can be obtained by

pTh i = ∑pT1α
∑α

: ð5Þ

Here, pT1 is the value of transverse momentum correspond-
ing to the experimental data, and α is the value of d2N/
Nevent2πpTdpTdy that corresponds to the pT1.In this figure,
one sees that the calculations can describe the experimental
data well in the range of the errors permitted. For deuterons,
the values of average transverse momenta in the different
incident energy get closer with decrease of centrality percent-
age. It has indicated that the transverse excitation degree
increases with collision centrality.

3.3. Dependence of Parameters on Number of Participating
Nucleons. Figures 8 and 9 give the change trends of parame-
ters (T and q) with the average number of participants for
deuterons and antideuterons produced in Au+Au collision

at the midrapidity (jyj < 0:3) for
ffiffiffiffiffiffiffi
sNN

p = 14:5, 62.4, and
200GeV. The symbols represent the parameter values
extracted from Figures 1–6 and listed in Tables 2–4.

From Figures 8 and 9, we can see that the values of T
parameters increase with decrease of centrality percentage,
and the values of q parameters increase with increase of cen-
trality percentage. Entropy is a physical quantity that repre-
sents the degree of chaos in the system. When a central
collision occurs, the motion law of the final state particles is
complex, and the whole system is in a higher state of order,
so the entropy value is small. In the central region where
the collision occurs, with the increase of the intensity of the
collision, the corresponding effective temperature increases.
The dependence of effective temperature on collision energy
increases with the increase of collision energy. Under the
same collision parameters, the entropy increases with the
increase of collision energy, indicating that the higher the
collision energy is, the more different microscopic states the
particle may have, and the more disordered the system
becomes. The kinetic freeze-out temperature can be extracted
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Figure 2: Deuteron transverse momentum spectra in Au+Au collisions at
ffiffiffiffiffiffiffi
sNN

p = 62:4GeV for 0-10%, 10-20%, 20-40%, 40-60%, and 60-
80% centralities. Calculations are shown by the solid lines. Experimental data taken from the STAR Collaboration [20] are represented by
the symbols.
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Figure 3: Deuteron transverse momentum spectra in Au+Au collisions at
ffiffiffiffiffiffiffi
sNN

p = 200GeV for 0-10%, 10-20%, 20-40%, 40-60%, and 60-80%
centralities. Calculations are shown by the solid lines. Experimental data taken from the STAR Collaboration [20] are represented by the
symbols.

Table 3: Values of T , q, and χ2/dof corresponding to the curves in Au+Au collisions at
ffiffiffiffiffiffiffi
sNN

p = 62:4GeV for 0-10%, 10-20%, 20-40%, 40-
60%, and 60-80% centralities. The “Ratios” is the average ratios of experimental data to model.

Figure Type 1 Type 2 T (GeV) q χ2/dof Ratios

Figure 2 d

0-10% 0:607 ± 0:008 1:135 ± 0:051 0.037 0.785

10-20% 0:587 ± 0:004 1:155 ± 0:038 0.061 0.711

20-40% 0:527 ± 0:006 1:175 ± 0:022 0.124 0.731

40-60% 0:507 ± 0:003 1:195 ± 0:010 0.107 0.887

60-80% 0:487 ± 0:001 1:215 ± 0:003 0.274 0.910

Figure 5 �d

0-10% 0:607 ± 0:001 1:135 ± 0:005 2.527 0.712

10-20% 0:567 ± 0:001 1:155 ± 0:005 1.464 0.834

20-40% 0:527 ± 0:001 1:175 ± 0:003 2.231 0.833

40-60% 0:507 ± 0:001 1:195 ± 0:003 2.099 1.095

60-80% 0:407 ± 0:002 1:215 ± 0:001 3.303 0.966
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Figure 4: Antideuteron transverse momentum spectra in Au+Au collisions at
ffiffiffiffiffiffiffi
sNN

p = 14:5GeV for 0-10%, 10-20%, 20-40%, 40-60%, and
60-80% centralities. Calculations are shown by the solid lines. Experimental data taken from the STAR Collaboration [20] are represented
by the symbols.

Table 4: Values of T , q, and χ2/dof corresponding to the curves in Au+Au collisions at
ffiffiffiffiffiffiffi
sNN

p = 200GeV for 0-10%, 10-20%, 20-40%, 40-
60%, and 60-80% centralities. The “Ratios” is the average ratios of experimental data to model.

Figure Type 1 Type 2 T (GeV) q χ2/dof Ratios

Figure 3 d

0-10% 0:667 ± 0:004 1:145 ± 0:021 0.069 0.889

10-20% 0:647 ± 0:004 1:175 ± 0:017 0.040 0.847

20-40% 0:627 ± 0:008 1:195 ± 0:036 0.004 0.989

40-60% 0:567 ± 0:001 1:215 ± 0:006 0.048 0.782

60-80% 0:507 ± 0:001 1:235 ± 0:003 0.063 0.906

Figure 6 �d

0-10% 0:667 ± 0:001 1:145 ± 0:005 0.086 0.795

10-20% 0:647 ± 0:001 1:165 ± 0:005 0.047 0.770

20-40% 0:627 ± 0:001 1:195 ± 0:004 0.048 0.802

40-60% 0:607 ± 0:001 1:215 ± 0:002 0.055 0.853

60-80% 0:597 ± 0:001 1:255 ± 0:001 0.206 1.183
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Figure 5: Antideuteron transverse momentum spectra in Au+Au collisions at
ffiffiffiffiffiffiffi
sNN

p = 62:4GeV for 0-10%, 10-20%, 20-40%, 40-60%, and
60-80% centralities. Calculations are shown by the solid lines. Experimental data taken from the STAR Collaboration [20] are represented
by the symbols.
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from the effective temperature; the correlation between
Kinetic freeze-out temperature and centrality will be focused
in the future work.

4. Summary and Outlook

In summary, we have presented the transverse momentum
distributions of (anti-)deuterons in Au+Au collisions atffiffiffiffiffiffiffi
sNN

p = 14:5, 62.4, and 200GeV for 0-10%, 10-20%, 20-
40%, 40-60%, and 60-80% centralities. The Tsallis distribu-
tion in the multisource thermal model has been used in all
calculations. Based on this model, we have investigated trans-
verse momentum distributions of (anti-)deuterons and the
law about effective temperature and entropy with the central-
ity of collision. In conclusion, it can give the agreement
between calculation results and the experimental data. The
effective temperature extracted from d and �d increases with
decrease of centrality percentage at the same incident energy,
and the entropy index decreases with decrease of centrality
percentage at the same incident energy. And at the same col-
lision centrality, they increase with increase of incident
energy. But the Kinetic freeze-out temperature and the evolu-
tion of time during the collision have yet to be studied in
depth.
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