
Research Article
Cosmic Consequences of Kaniadakis and Generalized Tsallis
Holographic Dark Energy Models in the Fractal Universe

Abdul Jawad 1 and Abdul Malik Sultan 1,2

1Department of Mathematics, COMSATS University Islamabad, Lahore Campus 54000, Pakistan
2Department of Mathematics, University of Okara, Okara 56130, Pakistan

Correspondence should be addressed to Abdul Jawad; jawadab181@yahoo.com

Received 2 February 2021; Revised 24 March 2021; Accepted 3 April 2021; Published 20 April 2021

Academic Editor: Hooman Moradpour

Copyright © 2021 Abdul Jawad and Abdul Malik Sultan. This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work
is properly cited. The publication of this article was funded by SCOAP3.

We investigate the recently proposed holographic dark energy models with the apparent horizon as the IR cutoff by assuming
Kaniadakis and generalized Tsallis entropies in the fractal universe. The implications of these models are discussed for both the
interacting (Γ = 3Hb2ρm) and noninteracting (b2 = 0) cases through different cosmological parameters. Accelerated expansion
of the universe is justified for both models through deceleration parameter q. In this way, the equation of state parameter ωd
describes the phantom and quintessence phases of the universe. However, the coincidence parameter ~r =Ωm/Ωd shows the
dark energy- and dark matter-dominated eras for different values of parameters. It is also mentioned here that the squared
speed of sound gives the stability of the model except for the interacting case of the generalized Tsallis holographic dark
energy model. It is mentioned here that the current dark energy models at the apparent horizon give consistent results with
recent observations.

1. Introduction

To acquire a unified understanding of various entropy mea-
sures and how they connect to each other in a generalized
form, it is required to recall characteristics of “classical”
entropies. In information theory, information can be col-
lected through the probability distribution of some events
that belong to the sample space of all possible events which
are called entropies. Gibbs was the first who stated a hypoth-
esis [1] which was the source of inspiration for people to
define numerous entropies [2–4]. We hear and read fre-
quently as it is claimed due to Gibbs that the black hole
(BH) entropy is proportional to the area of the BH boundary
in spite of having proportionality to the volume of BH. In
recent times, these entropies have been the source for the
modeling of cosmic evolution in different setups [5–7]. It is
a matter of fact that to retrieve thermodynamical extensivity
for nonstandard systems, the entropies generalizing that of
Boltzman-Gibbs (BG) become necessary. For the study of
BH, generalized entropies have been employed [8–11], also

for the construction of new holographic dark energy (HDE)
models [12, 13]. Besides this, it has been revealed that such
kind of entropies can affect the Jeans mass [14], can provide
a theoretical basis for the modified Newtonian dynamics
(MOND) theory [15], may be inspired by the quantum fea-
tures of gravity [16], and evenmay illustrate inflation without
assuming inflation [17]. The foundation stone of primary
HDE [18] is a holographic principle, and it is proposed on
Bakenstein entropy [19–21]. It is observed that the Hubble
horizon is a proper casual boundary for the universe meeting
thermodynamics and conservation laws [22–25]. However,
HDE suffers from some problems when the Hubble horizon
is considered the IR cutoff [18, 26]. Some other HDE models
based on generalized entropy can give a considerable descrip-
tion of accelerated expansion of the universe even when the
apparent horizon is used as the IR cutoff [12, 13, 27]. Conse-
quently, more suitable models of HDE may be found using
generalized entropies.

The Tsallis entropy is a generalized form of BG entropy
which was presented in 1988 by Constantino Tsallis [28] as
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a fundamental to generalize the standard statistical mechan-
ics. In the literature, there is a wide debate regarding the
physical relevance of Tsallis entropy [29, 30]. However, at
the start of the 21st century, there is an identified increasing
wide spectrum of an artificial, natural, and social complex
system which certifies the consequences and predictions that
resulted from this nonadditive entropy (i.e., nonextensive
statistical mechanics). In this regard, one of the most precise
investigated frameworks is developed by Kaniadakis which is
the Tsallis nonextensive statistical mechanics and the gener-
alized power law statistics [28].

A lot of work has been done by Dubey et al. [31], Sharma
et al. [32–34], Srivastava et al. [35], and Ghaffari et al. [17,
36] on cosmic expansion in various theories of gravity by
using recently obtained DE models such as new Tsallis
HDE (NTHDE), Réyni HDE (RHDE), and Barrow HDE
(BHDE). They have made versatile studies on accelerated
expansion of the universe through various cosmological
parameters and planes and found consistent results with
recent Planck’s data [37]. In recent times, the Kaniadakis
statistics have been studied as generalized entropy measures
[2, 4] with some gravitational and cosmological conse-
quences [7, 38]. In view of these generalized entropies,
HDE models have been developed by Moradpour et al.
[11]. They have examined the deceleration parameter, EoS
parameter, and coincidence parameter for these models
and found consistent results with recent Planck’s data. It is
suggested that generalized entropies must obey fundamental
laws of thermodynamics such as the zeroth law [39–43]. The
above arguments and work done are the sources of motiva-
tion due to which we are going to examine BH entropy in
the different well-known generalized entropy formalisms
and study their capability in representing the current
accelerated expansion of the universe by formulating their
corresponding HDE models.

In the next section, Tsallis entropy of BH will be calcu-
lated using the relation of Boltzmann and Tsallis entropies.
Additionally, Kaniadakis entropy of BH will be computed
using the relationship of Kaniadakis statistics with Tsallis
entropy. Moreover, Sharma-Mittal and Rényi entropies of
BHwill also be discussed by applying their relation with Tsal-
lis entropy. In Section 3, the Kaniadakis holographic dark
energy (KHDE) will be discussed along with some of its cos-
mological consequences such as deceleration parameter q,
EoS parameter ωK

d , and the dimensionless ratio called coinci-
dence parameter ~r =Ωm/ΩK

d for both the interacting and
noninteracting cases. The stability of the achieved model
for both the interacting and noninteracting cases is also ana-
lyzed by the squared speed of sound C2

s . In Section 4, the
NTHDE of BH will be discussed. We will find some cosmo-
logical parameters using this model for both the noninteract-
ing and interacting cases such as deceleration parameter q,
EoS parameter ωT

d , and the dimensionless ratio called coinci-
dence parameter ~r =Ωm/ΩT

d . The squared speed of sound C2
s

will also be evaluated to investigate the stability of the model
taking both the interacting and noninteracting cases into
account. In Section 5, achieved results are compared with
the observational data and some concluding remarks about
our work have been discussed.

2. Tsallis and Kaniadakis Entropies of BH

Both the Gibbs [1] and Shannon [44] entropies of distribu-
tion with W states working in the unit kB = 1 leads to the
relation explicitly dealt in [11]:

S = −〠
W

i=1
Pi ln Pið Þ, ð1Þ

where Pi represents the probability of occupying the ith state
for the classical system. The so-called von Neumann entropy
which is a quantummechanical form of this entropy is repre-
sented as

S = −Tr ρ ln ρð Þ½ �: ð2Þ

The utilization of Equation (2) for the classical system
goes back to the proposal of Boltzmann, where ρ represents
the state density in the phase space [45]. One can obtain
the so-called Bekenstein entropy (SBH = A/4) by applying
Equation (2) to a purely gravitational system [19]. Since
degrees of freedom are disseminated on the horizon without
any preference w.r.t. one another, one may consider that Pi is
equal for all of them [20, 21] permitting us to write Pi = 1/W.
In such manner, Equations (1) and (2) lead to the Boltzmann
entropy (S = ln ðWÞ), and thus, we have [7]

SBH = A
4 = ln Wð Þ⇒W = exp A

4

� �
, ð3Þ

for horizon entropy and accordinglyWðAÞ. As a unique free
parameter generalized entropy, the Tsallis entropy is defined
as [4]

STQ = 1
1 −Q

〠
W

i=1
PQ
i − Pi

� �
, ð4Þ

where Q is an unknown free parameter named as the nonex-
tensive or Tsallis parameter (STQ → S for Q→ 1). When the
probability distribution meets the conditions Pi = 1/W,
Equation (4) yields

STQ = W1−Q − 1
1 −Q

: ð5Þ

The quantum features of gravity [7, 46] are also a source
for the existence of Q parameter. Now, taking δ = 1 −Q and
utilizing Equation (3) with Equation (5), one can find easily

STQ = 1
1 −Q

exp 1 −Qð ÞSBHð Þ − 1½ � = 2 exp δSBH/2ð Þ
δ

sinh δSBH
2

� �
:

ð6Þ

In the scenario of loop quantum gravity, it is acquired by
applying the Tsallis entropy definition to BH [11, 47] that
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STQ = 1
1 −Q

exp 1 −Qð Þ ln 2ð Þ
πβ

ffiffiffi
3

p SBH

� �
− 1

� �
, ð7Þ

satisfying STQ → S whenever Q→ 1 and β = ln ð2Þ/π ffiffiffi
3

p
[11,

47]. Furthermore, Equation (6) and (7) become accordingly
the same when we consider β = ln ð2Þ/π ffiffiffi

3
p

.
Another single-free parameter generalized entropy is

Kaniadakis entropy (K-entropy) [2, 3, 11], defined as

SK = −〠
W

i=1

P1+K
i − P1−K

i

2K = 1
2

ΣW
i=1 P1−K

i − Pi

	 

K

+ ΣW
i=1 P1+K

i − Pi

	 

−K

 !
,

ð8Þ

where K represents an unknown parameter, and the limit K
→ 0 is a way to obtain Boltzmann-Gibbs entropy [2, 3].
Comparing Equation (8) with (4) and (5), it can easily obtain

SK = ST1+K + ST1−K
2 : ð9Þ

Furthermore, by taking Pi = 1/W, Equation (8) assists in
getting [2, 3, 11]

SK = WK −W−K

2K : ð10Þ

Combining Equation (10) with Equation (3) yields

SK = 1
K

sinh KSBHð Þ: ð11Þ

It is observed that Sharma-Mittal and Rényi entropies
can be obtained as a function of Tsallis entropy as [13, 48]

SSM = 1
R

1 + 1 −Qð ÞSTð ÞR/1−Q − 1
� �

,

S = 1
1 −Q

ln 1 + 1 −Qð ÞSTð Þ,
ð12Þ

which leads to

SSM = 1
R

exp RSBHð Þ − 1½ �, S = SBH, ð13Þ

where R is an unknown parameter. It is suggested that β =
ln ð2Þ/π ffiffiffi

3
p

; otherwise, ðln ð2Þ/βπ ffiffiffi
3

p ÞSBH would occur in
mathematical results rather than SBH.

3. Kaniadakis Holographic Dark Energy

As it was claimed by the HDE hypothesis that if the current
accelerated universe is driven by vacuum energy, then its
total amount stored in a packet with size L3 should not go
beyond the energy of BH having the same size as it [18]. By
keeping in mind this, one can generate the following relation
in view of Kaniadakis entropy (11) as

Λ4 = ρKd ∝
SK
L4

, ð14Þ

for the vacuum energy ρKd . Now, taking the Hubble horizon
of the cosmos as the IR cutoff (i.e., L = 1/H ⇒ A = 4π/H2),
we obtain

ρKd = 3c2H4

8πκ sinh πκ

H2

� �
, ð15Þ

where the constant c2 is unknown [18], κ belongs to a set of
real numbers [3], and H = _a/a is the Hubble parameter.
Now, it is clear that we have ρKd → 3c2H2/8 (the well-
known Bekenstein entropy-based HDE) when k→ 0 [18].
Considering the pressureless fluid (with energy density ρm)
and the dark energy candidate (with pressure pd and density
ρKd ), the energy-momentum conservation laws for the fractal
universe take the form

_ρm + 3H + _υ

υ

� �
ρm = Γ, ð16Þ

_ρd + 3H + _υ

υ

� �
ρd + pdð Þ = −Γ, ð17Þ

where the “dot” represents the derivative w.r.t. cosmic time t,
and the phenomenal term Γ represents the interaction
between dark matter and DE (it also gives the flow of energy
between the two fluids) and has different mathematical
values for both the linear and nonlinear cases, among which
some linear cases are Γ1 = 3Hb2ðρm + ρdÞ, Γ2 = 3Hb2ρm, and
Γ3 = 3Hb2ρd [49–54] while some nonlinear cases are Γ4 = 3
Hb2ððρ2m/ðρm + ρdÞÞ + ρmÞ, Γ5 = 3Hb2ððρ2d/ðρm + ρdÞÞ + ρdÞ,
Γ6 = 3Hb2ððρ2d/ðρm + ρdÞÞ + ρd + ρmÞ, and Γ7 = 3Hb2ððρ2m/ð
ρm + ρdÞÞ + ρd + ρmÞ [53, 54] with b2 being the coupling con-
stant. We have chosen Γ = 3Hb2ρm [49] as it is simple and
leads to precise results. The fractal profile is either timelike
or spacelike. We have chosen the timelike fractal profile in
the power law form as υ = a−γ [36, 55] with a being the scale
factor depending upon cosmic time t and γ being a positive
constant. In the fractal universe, the Friedmann equations
can be obtained as

H2 +H
_υ

υ
−
ω

6 _υ2 = 1
3 ρm + ρdð Þ, ð18Þ

_H +H2 −H
_υ

υ
+ ω

3 υ
2 −

□υ

2υ = −
1
6 ρ + 3pð Þ, ð19Þ

where □υ = ð1/ ffiffiffiffiffiffi−gp Þ∂μð ffiffiffiffiffiffi−gp ∂μυÞ with simplified relation as
□υ = −½€υ + 3H _υ�. From simplification of (16), one can find

ρm =
3Ωmo

H2
o

8π 1 + zð ÞΔ, ð20Þ
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where Δ = 3 − γ − 3b2, z represents the redshift parameter,
Ho is the value of the Hubble parameter at t = 0, and Ωmo

=
8πρmo

/3H2
o with ρmo

being a constant of integration.
The scope and importance of cosmological parameters is

increasing day by day as they are favorable tools to analyze
and track the history and evaluation of the universe. The
parameter q is one which decides whether the universe is fac-
ing accelerated expansion or not (i.e., q < 0 gives the acceler-
ated expansion of the universe while q > 0 when the universe
has decelerating expansion behavior) [56, 57]. The equation
of state (EoS) parameter ωd is one which decides the phases
of the cosmos (i.e., ωd < −1 represents the phantom phase
of the universe, and −1 < ωd < −1/3 describes the quintes-
sence phase while ωd > −1/3 gives the vacuum phase of the
universe) [58, 59]. The squared speed of sound C2

s is another
important cosmological parameter which decides whether
the model is stable or not (i.e., C2

s > 0 describes the stable
model while C2

s < 0 only when the model is unstable) [57,

58, 60]. The ratio of Ωm = ρm/ρc and Ωd = ρd/ρc called the
coincidence parameter given by ~r =Ωm/Ωd = ρm/ρd decides
the dark energy- and dark matter-dominated eras of the
universe (i.e., 0 <Ωm/Ωd < 1 describes the dark energy-
dominated era, and Ωm/Ωd > 1 gives the dark matter-
dominated era) [61]. In the upcoming, we will discuss these
cosmological parameters.

Differentiating (18) with respect to cosmic time t and
substituting all necessary values in it, one can get

_H =
−3κΩmo

H2
oΔa

−Δ − 8πκωH2γ3a−2γ

48πκ − 48πκγ − 8πκωγ2a−2γ − 12c2H2 sinh πκ/H2	 

+ 6πκc2 cosh πκ/H2	 
 :

ð21Þ

Using the transformation d/dt = −ð1 + zÞHðd/dzÞ from
cosmic time t to the redshift parameter z, simplification of
(21) gives the relation for H in terms of the redshift
parameter as

where the “prime” denotes the derivative with respect to red-
shift parameter z. The deceleration parameter q which is of

great importance to decide the accelerated expansion of the
universe can be found as

Substituting the corresponding values and simplifying
(17), we obtain

pKd = 3
8πκ γ − 3ð Þ 2πκc2H 1 + zð Þ cosh πκ

H2

� �
− 4c2H3

�h
� 1 + zð Þ sinh πκ

H2

� ��
H ′ − c2H4 γ − 3ð Þ sinh πκ

H2

� �
+ 3κb2Ωmo

H2
o 1 + zð ÞΔ

i
:

ð24Þ

The mathematical formalism for the EoS parameter is
ωK
d = pKd /ρKd , and the relation for ωK

d can be obtained by using
(15) and (24) in this formula as

ωK
d = −1 + 2πκ 1 + zð Þ coth πκ/H2	 


H3 γ − 3ð Þ −
4 1 + zð Þ
H γ − 3ð Þ

� �
H ′

+
3κb2Ωmo

H2
o 1 + zð ÞΔ

c2H4 γ − 3ð Þ sinh πκ/H2	 
 :
ð25Þ

Some other important mathematical formulas of cosmo-
logical consequences which we will use later on are

Ωm = ρm
ρc

,

Ωd =
ρd
ρc

,

Ωm

Ωd
= ρm

ρd
,

ρc =
3H2

8π :

ð26Þ

The ratio Ωm/ΩK
d which is of great importance to decide

about the dark energy- and dark matter-dominated eras of
the universe for the Kaniadakis entropy content of BH is
given by

H ′ =
8πκωH2γ3 1 + zð Þ2γ−1 + 3κΩmo

H2
oΔ 1 + zð ÞΔ−1

H 48πκ − 48πκγ − 8πκωγ2 1 + zð Þ2γ − 12c2H2 sinh πκ/H2	 

+ 6πκc2 cosh πκ/H2	 
� � , ð22Þ

q = −1 −
_H

H2 = −1 +
8πκωH2γ3 1 + zð Þ2γ + 3κΩmo

H2
oΔ 1 + zð ÞΔ

H2 48πκ − 48πκγ − 8πκωγ2 1 + zð Þ2γ − 12c2H2 sinh πκ/H2	 

+ 6πκc2 cosh πκ/H2	 
� � : ð23Þ
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Ωm

ΩK
d

=
κΩmo

H2
o 1 + zð ÞΔ

c2H4 sinh πκ/H2	 
 : ð27Þ

The stability of the system is examined by a perturbed
parameter called the squared speed of sound (C2

s ). The
mathematical formalism for this parameter is given by

C2
s =

∂peff
∂ρeff

, ð28Þ

where ρeff = ρm + ρKd and peff = pKd . Differentiating these
relations with respect to the redshift parameter leads to the
following mathematical result:

Variation of q against z has been plotted for interacting
(Figure 1) and noninteracting (Figure 2) cases, respectively.
By considering κ = 1400,2500,3600 with fixed values of other
parameters as Ωmo

= 0:315, b2 = 0:5, Ho = 67:9, ω = −0:3, c2
= 0:313, and γ = 0:127, we obtain the cosmic acceleration
phase in both cases. Also, the values of the deceleration
parameter lie in the range ½−1, 0Þ which is a compatible range
with observational data. In Figure 3, EoS parameter ωK

d for
the KHDE model is plotted versus deceleration parameter q
for the interacting case while in Figure 4, the same is plotted
for the noninteracting case. The evolved constant parameters
are taken, the same as in Figures 1 and 2. The phantom phase
of the universe is observed for the interacting case. For the
noninteracting case, the quintessence phase is achieved for

κ = 1400, 2500 and the phantom phase for κ = 3600. More-
over, the EoS parameter ωK

d → −1 as z→ −1 which coincides
with the ΛCDM model. In Figures 5 and 6, the coincidence
parameter ~r =Ωm/ΩK

d is plotted against q for interacting
and noninteracting cases, respectively. The dark energy-
dominated era is recovered for the interacting case while
for the noninteracting case, when κ = 1400, the interval −
0:95 < z < 0:65 gives the energy-dominated era while z >
0:65 results in the matter-dominated era; for κ = 2500, the
matter-dominated era is obtained when z > 0:83, and for κ
= 3600, the matter-dominated era is achieved when z > 1:1.
The squared speed of sound C2

s which decides the stability
of the model is examined for both cases (interacting and
noninteracting) in Figures 7 and 8, respectively. For the

–1.000

–0.5 0.0 0.5 1.0

–0.995

–0.990

–0.985
For interacting case

q

z

k = 1400
k = 2500
k = 3600

Figure 1: Behavior of deceleration parameter q against redshift
parameter z considering different values of κ when Ωmo

= 0:315, b2
= 0:5, Ho = 67:9, ω = −0:3, c2 = 0:313, and γ = 0:127.

For non-interacting case

–1.00

–0.95

–0.90

–0.85

q

–0.5 0.0 0.5 1.0
z

k = 1400
k = 2500
k = 3600

Figure 2: Behavior of q against z.

C2
s =

1
γ − 3ð Þ κΩmo

H2
oΔ 1 + zð ÞΔ−1 + c2 4H3H ′ sinh πκ/H2	 


− 2πκHH ′ cosh πκ/H2	 
h ih i
� 2πκc2 1 + zð Þ cosh πκ

H2

� �
H′2 +HH ′ × 1 + zð Þ−1 +HH ′′ + 2πκH−2H′2 tanh πκ

H2

� �� �h
− 4 1 + zð Þ sinh πκ

H2

� �
c2 3H2H′2 +H3H ′ 1 + zð Þ−1 +H3H ′′ − 2πκ ×H′2 coth πκ

H2

� �� �
+ 3κb2Ωmo

H2
oΔ 1 + zð ÞΔ−1 − c2 γ − 3ð ÞHH ′ 4H2 sinh πκ

H2

� �
− 2πκ cosh πκ

H2

� �� �i
:

ð29Þ
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interacting case, C2
s > 0 in the interval −0:95 < z < 0:63 which

leads to the stable model in this interval. The noninteracting
case model is stable when z < −0:18 while it becomes unsta-
ble when z > −0:18.

4. New Tsallis Holographic Dark Energy

Considering the pattern of (14) and (15) and taking Tsallis
entropy (6) into account, it is easy to have NTHDE as

ρTd ∝
STQ
L4

⇒ ρTd = 3T2

8π

� �
STQ
L4

, ð30Þ

where T2 is an unknown real number [18]. Taking D2 = πT2

and the apparent horizon as the IR cutoff (H = 1/L), we have

ρTd = 2D2ρc
X

exp X
2

� �
sinh X

2

� �
, ð31Þ

in which X = δπ/H2, where δ belongs to a set of real numbers
[11]. Substituting all required assumed and obtained values
in (29), we get

ρTd = 3H4D2

4π2δ
λ, ð32Þ

where λ = exp ðπδ/2H2Þ sinh ðπδ/2H2Þ. Considering all
assumptions, differentiating (18) w.r.t. cosmic time t, and
putting necessary values in it, we reach the following result:

H ′ =
16π2δHγ3ω 1 + zð Þ2γ−1 + 6πδΩmo

H2
oΔ 1 + zð ÞΔ−1H−1

16π2δ 6 − 6γ − ωγ2 1 + zð Þ2γ	 

− 9D2λ 16H2 − πδ coth πγ/2H2	 


+ 1
	 
	 
 :

ð33Þ

For non-interacting case
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Figure 4: Variation of EoS parameter ωK
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parameter q.
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Figure 6: Plot of ~r =Ωm/ΩK
d against q.

For interacting case

–1.35

–1.30

–1.25

–1.20

–1.15

–1.10

–1.05

–1.00

–1.000 –0.998 –0.996 –0.994 –0.992 –0.990 –0.988 –0.986
q

k = 1400
k = 2500
k = 3600

𝜔
K d

Figure 3: Graph of EoS ωK
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The deceleration parameter q for the NTHDE model is
obtained as

q = −1 −
_H

H2 = −1

+
16π2δγ3ω 1 + zð Þ2γ + 6πδΩmo

H2
oH

−2Δ 1 + zð ÞΔ
96π2δ 1 − γð Þ − 16π2δωγ2 1 + zð Þ2γ − 9D2λ 16H2 − πδ coth πγ/2H2	 


+ 1
	 
� � :

ð34Þ

Substituting the concern values from the NTHDE model
and simplifying Equation (17) yield

pTd =
9b2Ωmo

H2
o 1 + zð ÞΔ

8π γ − 3ð Þ −
3D2H4H ′λ

4π2δ
+ 3D2H 1 + zð ÞλH ′

4π γ − 3ð Þ
� coth πδ

2H2

� �
+ 1 − 4H2

πδ

� �
:

ð35Þ

The relation for EoS parameter ωT
d is obtainable after

simplifications of Equations (32) and (35) as

ωT
d = pTd

ρTd
=
πδb2Ωmo

H2
o 1 + zð ÞΔ

2H4D2 γ − 3ð Þλ − 1 + 1 + z
γ − 3

� πδ

4H3 coth πδ

2H2

� �
+ πδ

4H3 −
4
H

� �
H ′:

ð36Þ

The coincidence parameter for the obtained model is

~r = Ωm

ΩK
d

=
πδΩmo

H2
o 1 + zð ÞΔ

2D2H4λ
: ð37Þ
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The relation for a perturbed parameter called the squared
speed of sound which is given in (28) is obtainable as

C2
s =

1
γ − 3ð Þ 3πδΩmo

H2
oΔ 1 + zð ÞΔ−1 + 6D2HH ′λ 4H2 − πδ − πδ coth πδ/2H2	 
� �h i

� 9πδb2Ωmo
H2

oΔ 1 + zð ÞΔ−1 + 6D2 × γ − 3ð ÞHH ′λ
h
� πδ coth πδ

2H2

� �
− 4H2 + πδ

� �
+ 6D2πδβ 1 + zð Þ

� H′2 +HH ′ 1 + zð Þ−1 +HH ′′ − πδH−2H′2 + πδ ×H−2H′2 tanh πδ

2H2

� �� �

+ 6D2πδ 1 + zð Þλ H′2 +HH ′ 1 + zð Þ−1 +HH ′′ − πδH−2H′2
�

− πδH−2H′2 coth πδ

2H2

� ��
− 24D2 1 + zð Þλ 3H2H′2 +H3H ′ 1 + zð Þ−1

�

+H3H ′′ − πδH′2 − πδH′2 coth πδ

2H2

� ���
,

ð38Þ

where β = exp ðπδ/2H2Þ cosh ðπδ/2H2Þ.

The graph of deceleration parameter q against redshift
parameter z is plotted in Figures 9 and 10 for interacting
and noninteracting cases, respectively. Constant parameters
are δ = 4100,4700,5300, Ωmo

= 0:315, b2 = 0:5, Ho = 67:9, ω
= −0:3, D2 = 0:313, and γ = 0:127. Required results (acceler-
ated expansion) of the universe are achieved in both cases.
EoS parameter ωT

d for the NTHDE model is plotted versus
deceleration parameter q for interacting and noninteracting
cases in Figures 11 and 12, respectively. The involved param-
eters are taken, the same as in Figures 9 and 10. The phantom
phase of the universe is observed for the interacting case, and
the quintessence phase is achieved for the noninteracting
case. In Figures 13 and 14, the coincidence parameter ~r =
Ωm/ΩT

d is plotted against q for interacting and noninteracting
cases, respectively. The dark energy-dominated era is recov-
ered for the interacting case whereas for the noninteracting
case, when δ = 4100, the interval −0:95 < z < 0:8 gives the
energy-dominated era while z > 0:8 results in the matter-
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dominated era; for δ = 4700, the matter-dominated era is
obtained when z > 1, and for δ = 5300, the matter-
dominated era is achieved when z > 1:23. In Figures 15 and
16, the squared speed of sound C2

s has been plotted to exam-
ine the stability of the model for both the interacting and
noninteracting cases, respectively. For the interacting case,
C2
s < 0 while for the noninteracting case, it leads to positive

values which describes the stable model.

5. Conclusions

We have investigated the interacting and noninteracting
behaviors of KHDE and NTHDE with the apparent horizon
and extracted various cosmological parameters by varying
the value of κ for KHDE and δ for NTHDE and keeping all
other parameters fixed as Ωmo

= 0:315, b2 = 0:5, Ho = 67:9,
ω = −0:3, c2 = 0:313, D2 = 0:313, and γ = 0:127. The cosmo-
logical consequences resulted as follows.

5.1. Deceleration Parameter. For the KHDE model, the decel-
eration parameter q provides the accelerated universe in both
the interacting and noninteracting cases. The results
obtained in both cases for q are compared with Planck’s
observational data [62] presented in Table 1. It has been
found that the results of the KHDEmodel are consistent with
the observational data at the present epoch in both the inter-
acting and noninteracting cases. At z = 0, for the interacting
case, we have achieved ðκ, qÞ = ð1400,−0:9937Þ, ð2500,−
0:9939Þ, ð3600,−0:9944Þ, and for the noninteracting case,
we obtained ðκ, qÞ = ð1400,−0:9773Þ, ð2500,−0:9781Þ, ð3600,
−0:9800Þ. The deceleration parameter q has given that
NTHDE can model the accelerated universe in both the
interacting and noninteracting cases. The results obtained
in both cases for q are compared with Planck’s observational
data [62] presented in Table 1. It has been found that the
results of the NTHDEmodel are consistent with the observa-
tional data at the present epoch in both the interacting and
noninteracting cases. At z = 0, for the interacting case, we
achieve ðδ, qÞ = ð4100,−0:99976Þ, ð4700,−0:99973Þ, ð5300,−
0:99968Þ, and for the noninteracting case, we obtain ðδ, qÞ
= ð4100,−0:99954Þ, ð4700,−0:99948Þ, ð5300,−0:99939Þ.
5.2. EoS Parameter. For the KHDE model, the EoS parameter
ωK
d has illustrated the phantom phase of the universe at dif-

ferent values of κ for the interacting case. However, it shows
the quintessence phase of the universe for κ = 1400, 2500 and
the phantom phase for κ = 3600 when the noninteracting
case is under consideration. Moreover, we compared these
results with Planck’s observational data [62] presented in
Table 2. The comparison shows that results obtained by the
KHDE model have consistency with the observational data
at z = 0 in both cases. For the interacting case, we found the
values of ðκ, ωK

d Þ at the present epoch as ð1400,−1:16Þ, ð
2500,−1:12Þ, ð3600,−1:08Þ while for the noninteracting case,
we achieve ðκ, ωK

d Þ = ð1400,−0:988Þ, ð2500,−0:997Þ, ð3600,−
1:007Þ. For the NTHDE model, the EoS parameter ωT

d tells
about the phantom phase of the universe at different values
of δ for the interacting case while it shows the quintessence
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s versus redshift
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Table 1

q Observational schemes

−0:644+0:223−0:223 BAO+TDSL+Masers+Pantheon

−0:6401+0:187−0:187 BAO+TDSL+Masers+Pantheon+Ho

−0:930+0:218−0:218 BAO+TDSL+Masers+Pantheon+Hz

−1:2037+0:175−0:175 BAO+TDSL+Masers+Pantheon+Ho+Hz

Table 2

ωd Observational schemes

−1:56+0:60−0:48 Planck+lowE+TT

−1:58+0:52−0:41 Planck+lowE+TT, TE, EE

−1:57+0:50−0:40 Planck+lowE+lensing+TT, TE, EE

−1:40+0:10−0:10 Planck+lowE+lensing+BAO+TT, TE, EE
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phase of the universe for the noninteracting case. Moreover,
we compared these results obtained with Planck’s observa-
tional data [62] presented in Table 2. The comparison shows
that results obtained by the NTHDE model have consistency
with the observational data at z = 0 in both cases. For the
interacting case, we found the values of ðδ, ωT

d Þ at the present
epoch as ð4100,−1:032Þ, ð4700,−1:023Þ, ð5300,−1:017Þ, and
for the noninteracting case, we achieve ðδ, ωT

d Þ = ð4100,−
0:99959Þ, ð4700,−0:99958Þ, ð5300,−0:99955Þ.

5.3. Coincidence Parameter. For the KHDE model, the coin-
cidence parameter ~r =Ωm/ΩK

d is achieved for both the inter-
acting and noninteracting cases. For the interacting case, we
obtain the dark energy-dominated era for −0:95 < z < 1. For
the noninteracting case, when κ = 1400, the interval −0:95
< z < 0:65 gives the energy-dominated era while z > 0:65
results in the matter-dominated era; for κ = 2500, the
matter-dominated era is obtained when z > 0:83, and for κ
= 3600, the matter-dominated era is achieved when z > 1:1.
The coincidence parameter for the NTHDE model ~r =Ωm/
ΩK

d has been examined for both the interacting and noninter-
acting cases. For the interacting case, we got the dark energy-
dominated era in the interval −0:95 < z < 1. For the noninter-
acting case, when δ = 4100, the interval −0:95 < z < 0:8 gives
the energy-dominated era while z > 0:8 results in the matter-
dominated era; for δ = 4700, the matter-dominated era is
obtained when z > 1, and for δ = 5300, the matter-
dominated era is achieved when z > 1:23.

5.4. Squared Speed of Sound. The squared speed of sound C2
s

which decides the stability of the model is examined for both
the interacting and noninteracting cases. For the interacting
case, C2

s > 0 in the interval −0:95 < z < 0:63 which is a justifi-
cation for the stable model in this interval while the KHDE
model is unstable when z > 0:63. For the noninteracting case
model, behavior is stable when z < −0:1873 while it becomes
unstable when z > −0:1873. For the NTHDE model, the
squared speed of sound C2

s is examined for both the interact-
ing and noninteracting cases. For the interacting case, C2

s < 0
which gives that the achieved model is unstable for the
interacting case but it has given positive values of C2

s for the
noninteracting case in the interval −0:95 < z < 2, which is a
justification for the stable model.

Ghaffari et al. investigated the cosmological conse-
quences of the interacting THDE model with the apparent
radius in the fractal universe [36]. They constructed various
cosmological parameters such as the EoS parameter, the
deceleration parameter, and the evolution equation. They
suggested that THDE described the transition that took place
from the deceleration phase of the universe to the accelerated
phase, eventually in both the noninteracting and interacting
scenarios. Also, it is checked that the free parameters of the
models are compatible with the latest observational results
by using the Pantheon supernovae data, 6df, eBOSS, BOSS
DR12, CMB Planck 2015, and Gamma-Ray Burst. They also
found unstable behavior of the THDE model in both scenar-
ios. However, in our case, KHDE and NTHDE with the
apparent horizon in the fractal universe have provided con-

sistent results with recent Planck’s data [37] (as mentioned
in Tables 1 and 2). It is also found that at the present epoch,
the KHDE model is stable for the interacting case but unsta-
ble for the noninteracting case. The NTHDE model shows
unstable behavior for the interacting case while stable behav-
ior for the noninteracting case.

Data Availability

I have mentioned all the results in the manuscript and refer-
ences therein.
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