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Abstract: Selecting genetically diverse and complementary parental lines and superior crosses are
pre-requisites in developing improved cultivars. The objectives of this study were to determine the
combining ability effects and gene action conditioning rice yellow mottle virus disease (RYMVD)
resistance and agronomic traits in rice (Oryza sativa L.). Ten parental lines and their 45 F2 progenies
were field evaluated in three locations using a 5 × 11 alpha lattice design with two replications. The
genotype × site interaction effects were significant (p < 0.05) for the number of tillers (NT), number
of panicles per plant (NPP), number of grains per panicle (NGP), percentage of filled grains (PFG),
thousand grain weight (TGW), RYMVD resistance and grain yield (GY). The analysis of general and
specific combining ability (GCA and SCA) indicated involvement of both additive and non-additive
gene action governing inheritance of traits. High GCA/SCA ratio estimate revealed additive genetic
effect was predominant. Parental lines Mwangaza, Lunyuki, Salama M-57, Salama M-19, IRAT 256
and Salama M-55, which had negative GCA effects for RYMVD, and families such as SARO 5 ×
Salama M-55, IRAT 245 × Rangimbili, Rangimbili × Gigante and Rangimbili ×Mwangaza, which
had negative SCA effects for RYMVD, were selected for RYMV resistance breeding. The crosses
Rangimbili × Gigante, Gigante × Salama M-19 and Rangimbili × Salama M-55 were selected due to
their desirable SCA effects for GY. The predominance of additive gene effects for agronomic traits
and RYMVD resistance in the present breeding populations suggested that rice improvement could
be achieved through gene introgression using recurrent selection.

Keywords: cultivar development; diallel; gene action; RYMV resistance; rice breeding; yield compo-
nents

1. Introduction

Rice (Oryza sativa L., 2n = 2x = 24) is the second most important global crop after
wheat in terms of total production [1]. Globally, rice is cultivated on about 167 million
hectares with an annual production of 744.4 million tons of grain [2]. More than 90% of rice
is grown and consumed in Asia [3,4], while sub-Saharan Africa (SSA) region accounts for
about 10% of the global rice production [5]. In East and Southern Africa region, Tanzania is
the second largest producer of rice after Madagascar. Rice is ranked as the second most
important staple crop after maize (Zea mays) in Tanzania [6,7].

Despite the contribution of rice to food and nutrition security, and enhanced liveli-
hoods of millions of people in Tanzania, the average yield in the country is 1.5 t ha−1,
which is significantly lower than the yield potential of 4.6 t ha−1 reported in Asia [5].
The low productivity of rice in Tanzania is caused by a combination of biotic and abiotic
stresses, and socio-economic constraints [8]. The rice yellow mottle virus (RYMV) disease
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has been identified as a major biotic constraint limiting rice productivity in SSA countries
including Tanzania [7,9]. The disease has since become endemic in all the rice-growing
regions under both rain-fed and irrigated production farming systems [10]. The RYMV
causes yield losses ranging from 20% to 100%, depending on cultivar susceptibility, and
stage of growth at the onset and development of infection [6,11,12]. The RYMV disease is
characterized by mottling and yellowing symptoms, resulting in reduced photosynthetic
area, stunted growth, reduced tiller formation and increased grain sterility [9,11]. Locally
grown, farmer-preferred rice varieties with good culinary properties have been reported
to be susceptible to RYMV [13]. Hence, there is a need to develop improved rice varieties
with RYMV resistance and farmer-preferred traits.

Host plant resistance is the most economical and environmentally friendly approach
to control the RYMV. The development of RYMV resistant and agronomically superior
genotypes requires genetically diverse and complementary parental lines and superior
crosses for selection [14]. Genes conditioning RYMV resistance have been reported pre-
viously [15–17]. The RYMV1 and RYMV2 are the most widely reported genes [15,18,19].
Hence, RYMV resistant and agronomically suitable donor parents can be used in local
pre-breeding programs to develop new populations for variety development. Gene intro-
gression requires an understanding of the nature of gene action and trait heritability.

Assessing combining ability and gene action for RYMV resistance and agronomic traits
in rice would provide a basis for the development and selection of a breeding population.
Combining ability analysis can facilitate the selection of suitable parents for hybridization,
and identification of promising recombinants [20–22]. Broadly, combining ability is divided
into the general combining ability (GCA) effects of the parents, and the specific combining
ability (SCA) effects of the crosses. The GCA is the average performance of a line in a series
of hybrid combinations and relates to additive gene action. The SCA refers to the deviation
of the performance of a cross-based on the average performance of its parents. The SCA
effects are associated with non-additive gene actions such as dominance and epistasis [23].
In a breeding program, selection of parents showing good GCA effects and their progenies
with high SCA effects for desirable traits are essential.

The diallel mating design has been extensively utilized in determining the combining
ability effects in rice breeding following [24]. This mating design has been widely used in
genetic analysis to investigate the inheritance of important traits of various crops including
rice. The design entails crossing of a parent with other parents in all possible combina-
tions. With diallel analysis, it is assumed that the genes in the parents are independently
distributed. The mating design is useful in providing pedigreed breeding population for
selection, progeny tests and to estimate genetic parameters. The diallel was used because it
can facilitate analyses of progenies developed from combinations involving a wide range of
parents including inbred lines or broad-based parental lines. Griffings’ full diallel analysis
(Method I) that includes parents, crosses and their reciprocals is used to estimate maternal
effects, while Method III includes only parents that becomes the design of choice in various
genetic analysis studies. Method II includes reciprocals and is used in measuring various
genetic parameters. Method II reduces the number of entries from p2 cross combinations,
for a full diallel, to p/2(p + 1) [24]. This lowers both labor and cost of the crossing program,
particularly for crops with cleistogamous flowering system such as rice.

Several studies have been carried out on combining ability effects in rice with varied re-
sults. Refs. [25,26] reported a preponderance of additive gene action in conditioning RYMV
resistance. Conversely, Ref. [27] who reported dominance gene action was responsible for
conditioning resistance to RYMV. Therefore, combining ability analyses and genetic predic-
tions are dependent on the test populations and environment. With a goal of developing
rice varieties adapted to Tanzanian conditions, with strong RYMV resistance, genetically
diverse rice genotypes were assembled and evaluated using agronomic traits and simple
sequence repeat (SSR) markers [28]. The RYMV resistance is the trait of priority for this
research. However, there is need to complement economic agronomic traits such as early
flowering and maturity, panicle size or other farmer-preferred desirable traits. RYMV resis-
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tant varieties must be suitable for farming conditions or meet farmer expectations in other
attributes. Consequently, breeding for the RYMV resistance was considered in combination
with other agronomic performance. The RMYV resistance is the most significant trait.
Breeding approach based on recurrent backcrossing to at least the BC5 generation would
be more appropriate, with field evaluation in Tanzania. This allowed for the selection of
promising and complementary parents to be included in a rice pre-breeding program in
Tanzania. Therefore, the objective of this study was to determine the combining ability
effects and gene action conditioning rice yellow mottle virus resistance and agronomic
traits in the selected parental lines and derived families for subsequent breeding activities.

2. Materials and Methods
2.1. Plant Materials

Ten selected rice genotypes were used to generate new populations. A description of
the parental genotypes are presented in Table 1. The parents were selected from previous
phenotypic and genotypic evaluations for their diversity in terms of RYMV resistance and
agronomic traits. The parental varieties (accessions) were selected based on their high yield
and RYMV resistance while landraces were included because of their wide adaptability
to varied growing environments, agronomic and quality (aromatic) traits preferred by
smallholder farmers and local markets. The selections included genotypes sourced from
Sokoine University of Agriculture (SUA), landraces from local farmers, a variety from the
Tanzania Agricultural Research institute (TARI) and one genotype from AfricaRice.

Table 1. Description of rice parental genotypes used for population development.

No Genotype Status Origin RYMV Resistance Agronomic and Grain Quality Traits

1 Salama M-57 Accession Tanzania Resistance Unscented; long grain
2 IRAT 256 Accession Tanzania Resistance Unscented
3 Rangimbili Landrace Tanzania Susceptible Scented; high grain quality
4 Zambia Landrace Tanzania Susceptible Scented; high grain quality,
5 Lunyuki Accession Tanzania Resistance Unscented, long grain
6 SARO 5 Variety Tanzania Susceptible Scented, high yielding
7 Mwangaza Variety Tanzania Resistance Unscented; long grain
8 Salama M-55 Accession Tanzania Resistance Unscented
9 Gigante Accession AfricaRice Susceptible Large panicle

10 Salama M-19 Accession Tanzania Resistance Unscented; long grain

2.2. Population Development

Crossing blocks were initiated under a screenhouse condition at Tanzania Agricultural
Research Institute (TARI), Ilonga (6◦50′3.39” S and 36◦59′30.17” E), with an altitude of
491 m above sea level. The temperature range and mean relative humidity during the
growing period were 20–32 ◦C and 87.4%, respectively. The parents were planted in 10 L
capacity plastic pots. Crosses were undertaken using a 10× 10 half-diallel mating design to
produce 45 F1 families, between May and August in 2018. Parents were stagger-planted at
weekly intervals to synchronize flowering. A vacuum emasculation method was used [29].
Pollination was carried out between 10.00 a.m. to 12:00 noon. After emasculation, panicles
were immediately covered with a pollination bag and sealed with paper clips to avoid
unintended cross-pollinations. The pollinating bag was removed from the emasculated
female parent and a fertile panicle from the male parent was gently dusted onto the female
panicle. The flowers were bagged immediately after hand pollination. The pollinating
bag covered the female parent (Figure 1) to prevent cross-pollination and to maintain high
relative humidity for better fertilization. Mature seeds from each successful cross were
harvested 25 to 30 days after pollination and kept separately with proper records. The seed
of the F1 crosses (Figures 2 and 3) were planted for seed bulking and genetic analysis at the
F2 generation.
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2.3. Field Evaluations
2.3.1. Descriptions of the Study Areas

The parental lines and their F2 crosses were field evaluated in three sites namely,
Ifakara, Ilonga and Mkindo sites in Tanzania (Table 2). The experimental sites are recog-
nized hotspots for RYMV disease [6,10]. The sites are known for the high disease pressure
that develops during the growing season and can cause yield losses of 100% under epi-
demic conditions [10]. Evaluations were conducted during the main cropping season
(December 2019 to June 2020). The climatic conditions of the study sites are summarized in
Table 2. All the three sites experience a sub-humid tropical climate with a bimodal rainfall
distribution. The short rainy season usually starts in October and ends in December, while
the long rainy season lasts between March and May.



Agronomy 2021, 11, 12 5 of 16
Agronomy 2021, 11, x FOR PEER REVIEW 5 of 17 
 

 
Figure 3. F1 plants established in plastic pots to produce F2 seeds. 

2.3. Field Evaluations 
2.3.1. Descriptions of the Study Areas 

The parental lines and their F2 crosses were field evaluated in three sites namely, 
Ifakara, Ilonga and Mkindo sites in Tanzania (Table 2). The experimental sites are recog-
nized hotspots for RYMV disease [6,10]. The sites are known for the high disease pressure 
that develops during the growing season and can cause yield losses of 100% under epi-
demic conditions [10]. Evaluations were conducted during the main cropping season 
(December 2019 to June 2020). The climatic conditions of the study sites are summarized 
in Table 2. All the three sites experience a sub-humid tropical climate with a bimodal 
rainfall distribution. The short rainy season usually starts in October and ends in De-
cember, while the long rainy season lasts between March and May. 

Table 2. Descriptions of the three sites used for evaluation of 45 crosses and 10 parents. 

Site 
 

District 
 

Test 
Condition 

Latitude 
(S) 

Longitude 
(E) 

Altitude 
(masl) 

Total Annual 
Rainfall (mm) 

TMax 
(°C) 

TMin 
(°C) 

Ifakara Kilombero Rain-fed 08°03′ 36°40′ 271 980 27.34 17.71 
Ilonga Kilosa Irrigated 6°74’ 37°05’ 607 1194 28.43 19. 24 

Mkindo Mvomero Irrigated 6°14’ 38°41’ 430 975 25.67 16.94 

2.3.2. Experimental Design and Management 
The 10 parents and the 45 F2 crosses were established using a 5 × 11 alpha lattice 

design with two replications at each site. Each genotype was planted in a plot measuring 
2.4 m × 2.4 m. The seeds were planted directly at Ifakara while transplanting of 21-day 
old seedlings was carried out at the Ilonga and Mkindo sites. The seeds or seedlings were 
sown or transplanted, respectively, in each plot at a spacing of 20 cm × 20 cm, with one 
plant per hill. Potassium and phosphorous fertilizers were used for basal application at 
all sites prior to planting at a rate of 65 kg P ha−1 and 54 kg K ha−1, respectively. Urea fer-
tilizer (46% nitrogen content) was broadcasted in two equal splits (the first at tillering and 
the second at panicle initiation) as top dressings to deliver a total level of 60 kg N ha−1. 
The rest of the cultural practices, including thinning and hand weeding, were applied as 
recommended, to ensure uniform and healthy crop growth. 

  

Figure 3. F1 plants established in plastic pots to produce F2 seeds.

Table 2. Descriptions of the three sites used for evaluation of 45 crosses and 10 parents.

Site District Test
Condition

Latitude
(S)

Longitude
(E)

Altitude
(masl)

Total Annual
Rainfall (mm)

TMax
(◦C)

TMin
(◦C)

Ifakara Kilombero Rain-fed 08◦03′ 36◦40′ 271 980 27.34 17.71
Ilonga Kilosa Irrigated 6◦74′ 37◦05′ 607 1194 28.43 19. 24
Mkindo Mvomero Irrigated 6◦14′ 38◦41′ 430 975 25.67 16.94

2.3.2. Experimental Design and Management

The 10 parents and the 45 F2 crosses were established using a 5 × 11 alpha lattice
design with two replications at each site. Each genotype was planted in a plot measuring
2.4 m × 2.4 m. The seeds were planted directly at Ifakara while transplanting of 21-day
old seedlings was carried out at the Ilonga and Mkindo sites. The seeds or seedlings were
sown or transplanted, respectively, in each plot at a spacing of 20 cm × 20 cm, with one
plant per hill. Potassium and phosphorous fertilizers were used for basal application at
all sites prior to planting at a rate of 65 kg P ha−1 and 54 kg K ha−1, respectively. Urea
fertilizer (46% nitrogen content) was broadcasted in two equal splits (the first at tillering
and the second at panicle initiation) as top dressings to deliver a total level of 60 kg N ha−1.
The rest of the cultural practices, including thinning and hand weeding, were applied as
recommended, to ensure uniform and healthy crop growth.

2.3.3. Data Collection

Data collected included the rice yellow mottle virus reaction and agronomic traits,
based on the IRRI Standard Evaluation System (SES) for rice [3]. The severity of the rice
yellow mottle virus (RYMV) disease reaction was scored using a scale of 1 to 9 [30] (Table 3).

Data on days to 50% flowering (DFL), number of tillers per plant (NT), plant height
(PH), number of panicles per plant (NPP), panicle length (PL), number of grains per panicle
(NGP), percentage-filled grains per panicle (PFG), 1000-grain weight (TGW) and grain
yield (GY) were collected. The DFL were recorded by counting the number of days from
sowing to when 50% of all the plants in each plot had flowered. The NT from 10 randomly
selected plants in a plot were recorded at physiological maturity. PH was measured in
centimeters (cm) using a ruler from the soil surface to the tip of the longest panicle at
physiological maturity. The NPP was recorded by counting the number of fully exerted
panicles bearing grains from a sample of selected 10 plants and their sum averaged to
obtain the NPP. The PL was measured in centimeter using a ruler from the panicle base
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node to the tip (end) at the base on 10 randomly selected plants per plot. NGP was counted
using a seed counter and recorded as an average of samples from 10 panicles per plot.
The PFG was calculated as the proportion of unfilled grains to the total number of grains
from 10 sampled panicles per plot. TGW in grams was obtained by counting 1000 grains
from each plot using a seed counter (Elmor C1, Biotronic Bharat, New Delhi, India) and
weighing on an electronic balance (Ohaus Scout Pro Model 502 AC, Beijing, China). The
GY was determined by harvesting all panicles in each plot. The panicles were threshed
and winnowed to remove chaff. The weight of the grains was adjusted to 14% moisture
content and was expressed in tons per hectare (t ha−1).

Table 3. RYMV disease severity rating scale and description [29].

Rating Scale Description

1 Highly resistant (no symptoms observed)

3 Resistant (leaves green, but with sparse dots or streaks, less than 5%
reduction of height)

5 Moderate resistant (Leaves green or pale green with mottling, 6–25%
height reduction)

7 Susceptible (Leaves pale yellow or yellow, 26–75% height reduction,
flowering slightly delayed)

9 Highly susceptible (Leaves yellow or orange, more than 75% height
reduction, no flowering)

2.3.4. Data Analysis

The performance of each cross and parent was determined through the analysis of
variance using the REML procedure of GenStat 24th edition [31] and data normality was
tested using the Shapiro–Wilkes test before the analysis of variance (ANOVA). Means
separation was performed using the Fishers’ Unprotected Least Significant Difference
(LSD) procedure at a 5% probability level. Separate ANOVAs were conducted using
REML approach for each location and later combined data analysis were calculated across
locations after a test for homogeneity of variance was conducted. Parents and crosses
were considered as fixed effects, while replication was considered as a random effect in
computing the ANOVA for combining ability effects. Griffing’s [24] diallel method 2,
model 1, was used to estimate the GCA and SCA effects as:

Yij = µ+ gi + gj + sij +
1
bc

Σk eijkl.

where Yij = observed value of the cross between parent i and j; µ = The population (general)
mean; gi and gj = GCA effects of ith and jth parents, respectively; sij = SCA of the cross
between parents i and j; eijkl = environmental effect associated with ijklth individual
observation in kth replication. The GCA for each parent was calculated as described
by [22]:

GCAP = XP − µ.

The SCA effects of the crosses were computed from the formula:

SCAX = XX − E (XX) = XX − [GCAP + µ];

where GCAP = general combining ability effect of the parent; XP = Mean of the parent; µ =
Overall mean of all crosses; SCAX = specific combining ability of the parent in the cross; XX
= observed mean value of the cross; E (XX) = expected values of the cross basing on the
GCA of the parent.
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Baker’s ratios were also computed to estimate the relative importance of additive and
non-additive gene action in the expression of traits using Baker’s general predicted ratio
(GPR) as follows:

GCA/SCA = 2MSGCA/(2MSGCA + MSSCA)

where MSGCA = mean square for GCA and MSSCA = mean square for SCA.
A ratio of >0.5 implies that GCA is more important than SCA in the inheritance of

the character and a ratio of <0.5 implies that SCA is more important than GCA in the
inheritance of the character [32].

3. Results
3.1. Analysis of Variance and Mean Performance

The mean squares and significant tests among genotypes revealed that NT, NPP,
NGP, PFG, TGW and GY were significantly (p ≤ 0.05) affected by genotype × site inter-
action effects (Table 4). The genotypes exhibited significant differences for all assessed
traits. Genotype performance also varied across the sites for all the traits except for the
RYMV reaction.

Table 4. Mean squares and significant tests for 10 traits among 10 parents and 45 F2 crosses of rice evaluated in three
locations in Tanzania.

Sources of
Variation df DFL NT PH NPP PL NGP PFG TGW RYMVD GY

Site 2 1694.03 *** 208.37 *** 863.30 *** 90.87 *** 64.95 *** 3493.17 *** 416.9 *** 3.65 * 0.18 ns 6.61 ***
Rep (Site) 2 85.92 *** 33.27 *** 1760.60 *** 3.68 ns 7.71 * 17.55 ns 19.82 ns 2.37 * 0.1 ns 0.1 ns

Block (Rep) 20 8.00 ns 4.81 ** 129.9 ns 4.23 ** 4.14 *** 257.45 *** 25.91 ns 1.99 *** 0.24 ns 0.2 *
Genotype 54 441.33 *** 6.43 *** 342.2 *** 4.99 *** 5.98 *** 1649.19 *** 477.17 *** 6.87 *** 26.81 *** 0.97 ***

Genotype ×
Site 108 6.949 ns 3.29 * 76.9 ns 3.47 ** 2.19 ns 236.45 *** 45.23 *** 1.47 *** 0.45 ns 0.32 ***

Error 102 9.33 1.98 104 1.95 1.67 81.4 25.93 0.82 0.83 0.11

Note: df = degree of freedom; DFL = Days to 50% flowering; NT = number of tillers/plant; NPP = number of panicle/panicle; PH= plant
height; PL = panicle length; NGP = number of grains/panicle; PFG = percentage filled grains/panicle; TGW= thousand grain weight;
RYMVD = rice yellow mottle virus disease reaction; GY = grain yield; * = p < 0.05; ** = p < 0.01; *** = p < 0.001; ns, non-significant.

Mean values, coefficients of variation (CVs), and least significant differences (LSDs)
of the genotypes evaluated across three locations are presented on Table 5. The mean
DTF was 81.5 days (Table 5). Cross Lunyuki ×Mwangaza was the earliest to attain 50%
flowering at 66 days, which was followed by crosses Mwangaza × Salama M-19 and IRAT
256 × Rangimbili both at 67 days. Zambia × Salama M-55 was the latest cross to flower
and mature at 116 days. The parent Mwangaza was the earliest to reach 50% flowering,
after 66 days (Table 5). The NT ranged from 9 to 14 with a mean of 10.6. In terms of tillering
capacity, the crosses IRAT 256 × Zambia and IRAT 256 × Lunyuki produced the maximum
NT of 14 and 13, respectively. The PH ranged between 97.4 and 132 cm, with a mean of
115.2 cm. Crosses SARO × Gigante, SARO × Salama M-55 and Rangimbili ×Mwangaza
were the shortest with PHs of 97.4 cm, 101.4 cm and 101.6 cm, respectively. Cross IRAT 256
× SARO was the tallest at 157.7 cm. The parent Rangimbili recorded with the highest PH
of 132.7 cm. The mean number of NPP varied from 9 to 13, with a grand mean of 9.5 NPP
(Table 5). The highest number of NPP was 13, and 12 observed on the crosses IRAT 256 ×
Lunyuki and IRAT 256 × Zambia, in that order. The mean PL of the test genotypes was
23.7 cm. The longest PL crosses across the testing environments were Zambia × SARO and
Rangimbili × Salama M-55 with PL of 25.3 cm and 25.2 cm, respectively. The mean NGP
of the test genotypes was 124.5. The crosses with the maximum NGP were Salama M-57
× IRAT 256, Rangimbili × Gigante, Gigante × Salama M-19 and Salama M-55 × Gigante,
with 147, 146, 145 and, 144 NGP, in that order. The parents Salama M-55 and Salama M-19
had the highest NGP of 171 and 157, respectively. The PFG values varied from 64.2 to
97.1% with a mean of 84.1%. The best performing crosses were Gigante × Salama M-19,
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Rangimbili ×Mwangaza, Salama M-57 × Lunyuki, and IRAT 256 ×Mwangaza with PFG
of 96.6%, 95.4%, 95.3% and 95.1%, respectively. The parental lines Mwangaza, Salama M-55
and Salama M-19 recorded with the highest means for PFG. The mean TGW was 32.3 g.
Families Rangimbili × Mwangaza, Lunyuki × Mwangaza, Mwangaza × Salama M-19
and Mwangaza × Gigante had the highest TGW value of 34.3 g, 34 g, 33.8 g and 33.7 g,
respectively. The RYMVD symptoms ranged from 1 to 7 with the overall mean score of 3.5.
Crosses Salama M-57 × IRAT 256, Salama M-57 × Lunyuki, Salama M-57 ×Mwangaza,
Salama M-57 × Salama M-19, IRAT 256 × Rangimbili, IRAT 256 ×Mwangaza, Rangimbili
×Mwangaza, Lunyuki ×Mwangaza, Lunyuki × Salama M-19, SARO × Salama M-55,
Mwangaza × Salama M-19, Salama M-55 × Gigante, and Salama M-55 × Salama M-19
had the sources of RYMVD resistance with lowest RYMVD score of 1. The parental lines
Salama M-57, IRAT 256, Lunyuki, Mwangaza, Salama M-55, and Salama M-19 showed
resistance to RYMVD with a score of 1. The GY differed from 2.7 to 4.7 t ha−1 with a mean
of 3.7 t ha−1. The crosses with the highest GY values (Table 5) were Salama M-57 × IRAT
256, Rangimbili × Salama M-55, Rangimbili × Gigante, Gigante × Salama M-19, Salama
M-55 × Gigante, IRAT 256 × Rangimbili, and Salama M-57 × SARO had mean grain yield
of > 4.0 t ha−1. The parental lines Salama M-19, Salama M-57, Salama M-55, and IRAT 256
had the highest means for grain yield, producing 4.0 t ha−1 each.

Table 5. Means for agronomic traits and RYMVD reaction of 10 parental genotypes and 45 F2 crosses of rice evaluated
across locations in Tanzania.

Genotypes DFL NT PH NPP PL NGP PFG TGW RYMVD GY

Crosses
Salama M-57 × IRAT 256 77 11 113.9 9 22.9 147 93.7 31.8 1 4.7

Salama M-57 × Rangimbili 76 11 121.7 9 24.8 131 93.4 30.5 3 3.8
Salama M-57 × Zambia 76 11 117.7 9 24.6 121 70.9 31.8 5 2.9
Salama M-57 × Lunyuki 76 9 113.8 9 22.4 87 95.3 32.0 1 4.0

Salama M-57 × SARO 74 12 117.2 11 23.2 108 91.7 31.7 3 4.1
Salama M-57 ×Mwangaza 69 10 119.1 10 24.2 120 91.4 32.8 1 3.9

Salama M-57 × Salama M-55 75 11 119.2 10 23.8 98 76.9 32.3 5 3.4
Salama M-57 × Gigante 79 12 114.3 10 23.7 114 78.5 31.8 5 3.8

Salama M-57 × Salama M-19 78 10 118.8 9 22.8 94 89.7 32.5 1 3.8
IRAT 256 × Rangimbili 67 11 108.1 10 21.3 142 94.9 32.3 1 4.2

IRAT 256 × Zambia 75 14 128.5 12 23.7 122 81.1 31.8 5 3.0
IRAT 256 × Lunyuki 77 13 112.7 13 22.0 116 78.8 31.3 5 3.6

IRAT 256 × SARO 78 12 132.0 10 22.6 108 79.4 30.7 5 3.5
IRAT 256 ×Mwangaza 68 10 109.2 9 21.8 121 95.1 33.8 1 4.0

IRAT 256 × Salama M-55 69 11 118.4 10 23.3 89 67.6 32.0 5 3.0
IRAT 256 × Gigante 69 12 111.3 11 22.4 127 78.8 32.3 5 3.8

IRAT 256 × Salama M-19 78 11 116.8 11 21.3 99 71.2 31.5 7 2.8
Rangimbili × Zambia 86 11 124.9 11 24.7 126 69.5 30.8 5 3.5
Rangimbili × Lunyuki 76 10 117.6 9 23.8 129 86.6 30.7 3 3.1

Rangimbili × SARO 71 12 107.4 11 22.2 101 79.7 30.8 5 3.7
Rangimbili ×Mwangaza 68 9 101.6 8 21.3 113 95.4 34.3 1 3.5

Rangimbili × Salama M-55 87 10 123.4 9 25.2 148 84.6 31.3 3 4.6
Rangimbili × Gigante 85 11 110.9 10 23.6 146 93.4 32.7 3 4.6

Rangimbili × Salama M-19 82 10 120.5 9 23.7 85 72.2 31.7 5 3.1
Zambia × Lunyuki 75 11 126.4 10 24.0 92 70.1 30.0 5 3.1

Zambia × SARO 82 11 128.3 10 25.3 105 71.9 31.3 7 3.2
Zambia ×Mwangaza 69 10 118.2 9 23.7 97 87.7 32.7 3 3.5

Zambia × Salama M-55 116 9 115.4 8 24.8 136 78.5 32.3 5 3.9
Zambia × Gigante 80 12 118.4 10 24.6 109 70.2 33.0 5 3.3

Zambia × Salama M-19 70 12 120.5 9 23.6 90 73.3 31.0 5 2.7
Lunyuki × SARO 82 12 115.4 11 23.3 124 77.0 31.8 5 3.6

Lunyuki ×Mwangaza 66 10 111.6 9 22.8 124 93.1 34.0 1 3.9
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Table 5. Cont.

Genotypes DFL NT PH NPP PL NGP PFG TGW RYMVD GY

Lunyuki × Salama M-55 77 11 123.3 10 23.1 121 87.7 32.2 3 3.7
Lunyuki × Gigante 77 10 117.2 10 23.5 123 92.4 32.5 3 3.8

Lunyuki × Salama M-19 77 11 112.6 9 21.8 107 91.8 31.8 1 3.9
SARO ×Mwangaza 79 12 112.9 10 23.5 93 85.0 30.8 3 3.6

SARO × Salama M-55 68 11 101.4 10 23.3 133 91.6 30.5 1 4.0
SARO × Gigante 89 12 97.4 11 22.5 130 81.5 31.5 5 3.7

SARO × Salama M-19 79 11 111.3 10 23.3 105 84.3 30.2 3 3.4
Mwangaza × Salama M-55 71 10 119.3 9 23.7 100 67.8 33.2 5 3.0

Mwangaza × Gigante 72 11 115.6 10 24.5 103 69.5 33.7 5 3.0
Mwangaza × Salama M-19 67 9 113.7 8 23.7 110 90.6 33.8 1 3.3

Salama M-55 × Gigante 83 11 117.9 9 23.9 144 87.1 33.5 1 4.3
Salama M-55 × Salama M-19 72 11 120.8 10 24.1 133 84.5 32.2 1 3.1

Gigante × Salama M-19 85 10 109.1 9 23.7 145 96.6 33.0 3 4.5
Parents

Salama M-57 80 9 120.4 9 22.9 111 96.1 31.7 1 4.5
IRAT 256 75 11 108.6 10 22.1 115 95.0 31.3 1 4.2

Rangimbili 95 10 132.7 9 25.2 124 68.5 29.7 7 3.2
Zambia 96 9 122.7 8 25.4 136 75.2 33.3 7 3.5
Lunyuki 74 11 129.2 11 23.6 122 94.1 29.5 1 3.6

SARO 93 11 100.2 10 21.5 115 66.8 30.7 7 3.3
Mwangaza 66 12 102.3 9 22.7 134 97.1 34.8 1 3.6

Salama M-55 87 11 126.3 9 25.3 171 96.9 33.2 1 4.6
Gigante 89 12 97.1 11 23.3 94 64.2 34.5 7 2.9

Salama M-19 105 11 111.6 10 23.2 157 96.1 31.6 1 4.6

Mean 81.5 10.6 115.2 9.5 23.7 124.5 84.1 32.3 3.5 3.7
LSD 5.53 2.81 19.85 2.77 2.58 18.30 10.33 1.83 1.38 0.68

CV (%) 3.41 13.13 8.41 14.30 5.43 7.63 6.08 2.81 19.34 9.24
Note: DFL = days to 50% flowering; NT= number of tillers/plant; PH = plant height; NPP = number of panicle/panicle; PL = panicle
length; NGP = number of grains/panicle; PFG = percentage filled grains/panicle; TGW = thousand grain weight; RYMVD = rice yellow
mottle virus disease reaction; GY = grain yield; LSD = least significance difference; CV = coefficient of variation.3.2. Combining Ability
Effects of Parents and Their Crosses.

3.2. Combining Ability Effects of Parents and Their Crosses

The GCA and SCA variances for RYMVD reaction and assessed agronomic traits
were significant (p ≤ 0.001) (Table 6). The GCA and SCA effects for most agronomic traits
exhibited marked variability across the test sites exhibited by their significant interaction
with the site variance. In contrast, the GCA and SCA effects for RYMVD were not affected
by site variance.

Table 6. Mean squares and significant tests of general and specific combining ability effects for agronomic traits and RYMVD
reaction across three sites in Tanzania.

Sources of
Variation df DFL NT PH NPP PL NGP PFG TGW RYMVD GY

Site 2 1694.03 *** 208.37 *** 863.32 *** 90.87 *** 64.95 *** 3493.17 *** 416.90 *** 3.65 ** 0.05 ns 6.61 ***
Rep(site) 3 192.59 *** 66.94 *** 1180.31 *** 29.39 *** 6.25 *** 14.13 *** 13.38 *** 1.99 ns 0.10 ns 0.15ns

GCA 9 1258.56 *** 17.28 *** 1013.74 *** 14.79 *** 24.49 *** 2072.20 *** 1172.52 *** 36.37 *** 57.31 *** 1.80 ***
SCA 45 438.71 *** 4.77 *** 283.51 *** 4.14 ** 3.47 ** 2253.02 *** 514.30 *** 3.60 *** 14.19 *** 1.62 ***

GCA × site 18 11.24 ns 6.22 *** 65.34 ns 7.14 *** 5.19 *** 399.08 *** 61.65 *** 3.54 *** 0.50 ns 0.54 ***
SCA × site 90 7.37 ns 3.7 * 92.76 ns 3.55 ** 2.12 ns 260.04 *** 46.48 *** 1.52 *** 0.30 ns 0.32 ***

Error 162 9.43 2.63 103.57 2.31 1.96 75.2 25.05 0.90 0.44 0.11
Baker’s Ratio 0.7 0.8 0.8 0.8 0.9 0.5 0.7 0.9 0.8 0.5

Note: DF = degree of freedom; DFL = Days to 50% flowering; NT = number of tillers/plant; PH = plant height; NPP = number of
panicle/panicle; PL = panicle length; NGP = number of grains/panicle; PFG = percentage filled grains/panicle; TGW = thousand grain
weight; RYMVD = rice yellow mottle virus disease; GY = grain yield; * = p < 0.05; ** = p < 0.01; *** = p < 0.001; ns, non-significant.
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3.3. General Combining Ability Effects of the Parents

The GCA effects for agronomic traits and RYMVD reaction varied widely among the
parental lines (Table 7). Lines with negative GCA effects for RYMVD reaction scores and
DFL are ideal for developing RYMVD resistant and early flowering cultivars, in that order.
Parents Mwangaza, IRAT 256, Lunyuki and Salama M-57 had low negative GCA effects
for DFL. SARO 5, IRAT 256, Gigante and Salama M-57 had high positive GCA for NT and
NPP. Gigante and SARO 5 recorded with low negative GCA effects for PH. Parents Zambia
and Salama M-55 had high positive GCA effects for PL. Further, Salama M-55, Rangimbili
and Salama M-57 had large positive GCAs for NGP. Positive GCAs were also observed
for the PFG on Salama M-57, Mwangaza, and Lunyuki. The parents IRAT 256, Mwangaza
and Gigante had the highest GCA effects for TGW. Negative GCAs for RYMVD reaction
were observed for parents Mwangaza, Lunyuki, Salama M-57, Salama M-19, IRAT 256
and Salama M-55. Parental lines Salama M-57, IRAT 256, and Salama M-19 exhibited the
highest GCA effects for GY, making them suitable candidates for GY improvement.

Table 7. General combining ability effects for yield and yield components and RYMVD reaction of 10 parental genotypes
across three sites.

Genotype DFL NT PH NPP PL NGP PFG TGW RYMVD GY

Salama M-57 −1.92 *** 0.34 ** 1.76 * 0.26 * 0.08 ns 4.88 *** 4.60 *** −0.12 ns −0.73 *** 0.33 ***
IRAT 256 −4.46 *** 0.60 *** −0.61 ns 0.74 *** −1.00 *** 0.14 ns 1.01 ** 2.15 ** −0.34 *** 0.25 ***

Rangimbili 2.21 *** −0.42 *** 2.18 ** −0.39 *** 0.30 ns 5.74 *** −1.01 ** −0.64 *** 0.27 *** 0.01 ns
Zambia 4.93 *** −0.12 ns 5.69 *** −0.24 * 1.03 *** −2.63 *** −7.88 *** −0.05 *** 1.66 *** −0.34 ***
Lunyuki −2.71 *** 0.16 ns 2.80 *** 0.26 * 0.29 ** 2.17 *** 3.55 *** −0.57 *** −0.76 *** −0.01 ns
SARO 5 2.00 *** 0.81 *** −4.31 *** 0.60 *** −0.43 *** −5.38 *** −3.56 *** −0.96 *** 0.86 *** −0.06 *

Mwangaza −8.37 *** −0.75 *** 4.13 *** −0.58 *** −0.23 *** −3.70 *** 4.29 *** 1.39 *** −1.09 *** −0.10 ***
Salama M-55 2.55 *** −0.27 * 3.03 *** −0.35 ** 0.70 *** 11.82 *** 0.16 ns 0.31 *** −0.23 *** 0.17 ns

Gigante 2.88 *** 0.42 *** −5.75 *** 0.36 ** 0.12 ns 2.49 *** −3.49 *** 0.91 *** 0.91 *** 0.04 ns
Salama M-19 2.89 *** −0.10 ns −0.67 ns −0.15 *** −0.26 ** −1.43 *** 2.33 *** −0.12 ns −0.56 *** 0.22 **

Note: DF = degree of freedom; DFL = Days to 50% flowering; NT = number of tillers/plant; PH = plant height; NPP = number of
panicle/panicle; PL= panicle length; NGP = number of grains/panicle; PFG = percentage filled grains/panicle; TGW = thousand grain
weight; RYMVD = rice yellow mottle virus disease; GY = grain yield; * = p < 0.05; ** = p < 0.01; *** = p < 0.001; ns, non-significant.

3.4. Specific Combining Ability Effects of Crosses

The crosses exhibited marked variation based on the SCA effects for the assessed traits
(Table 8). The families, including Zambia × Salama M-19, SARO 5 × Salama M-55, Salama
M-55 × Salama M-19 and Rangimbili × SARO 5, had low negative SCA effects for DFL in
a desirable direction. Salama M-57 × SARO 5, IRAT 256 × Zambia, IRAT 256 × Lunyuki
and Zambia × Salama M-19 had large positive SCA effects values for NT. Crosses SARO 5
× Salama M-55, Rangimbili ×Mwangaza, IRAT 256 × Rangimbili and SARO 5 × Gigante
recorded low SCA effects for PH. The highest positive SCA effects for NPP were obtained
from the crosses IRAT 256 × Zambia, IRAT 256 × Lunyuki, Salama M-57 × SARO 5 and
Rangimbili × Zambia. Crosses Zambia × SARO 5, Mwangaza × Gigante and Salama M-57
× Rangimbili had high positive SCA effects for PL. The crosses Salama M-57 × IRAT 256,
Gigante × Salama M-19, Rangimbili × Gigante, IRAT 256 × Rangimbili and Lunyuki ×
Mwangaza had large positive SCA effects for NGP. Likewise, SARO 5 × Gigante, Lunyuki
× SARO 5, Rangimbili × Salama M-55, Salama M-57 × Rangimbili and Salama M-55
× Gigante had high positive SCA estimates for NGP. Rangimbili × Gigante, Gigante ×
Salama M-19, SARO 5 × Salama M-55, IRAT 256 × Rangimbili recorded with high positive
SCA effects for PFG. Crosses Rangimbili ×Mwangaza, Lunyuki ×Mwangaza, Lunyuki ×
SARO 5 and IRAT 256 × Rangimbili had positive SCA effects for TGW. Crosses SARO 5 ×
Salama M-55, IRAT 245 × Rangimbili, Rangimbili × Gigante, Rangimbili ×Mwangaza
and Salama M-57 × IRAT 256 had low negative SCA effects for RYMVD. Rangimbili ×
Gigante, Gigante × Salama M-19, Rangimbili × Salama M-55, Salama M-57 × IRAT 256,
IRAT 256 × Rangimbili and Mwangaza × Salama M-19 had high positive SCA effects
value for GY. Crosses IRAT 256 ×Mwangaza, Lunyuki ×Mwangaza, Zambia × Gigante
and Zambia × Salama M-55 also had high SCA effects for GY.
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Table 8. Specific combining ability effects for agronomic traits and RYMVD reaction among 45 crosses assesed in three sites
in Tanzania.

Crosses DFL NT PH NPP PL NGP PFG TGW RYMVD GY

Salama M-57 × IRAT 256 5.17 *** −0.57 ns −3.19 ns −1.04 * 0.39 ns 33.23 *** 4.56 ** 0.09 ns −1.45 *** 0.56 ***
Salama M-57 × Rangimbili −2.85 ** 0.56 ns 1.80 ns 0.35 ns 1.04 * 11.79 *** 6.31 *** −0.75 * −0.07 ns −0.15 ns

Salama M-57 × Zambia −5.89 *** 0.36 ns −5.68 ns 0.25 ns 0.11 ns 10.17 ** −9.24 *** −0.00 ns 0.55 ns −0.60 ***
Salama M-57 × Lunyuki 2.58 * −1.38 * −6.69 ns −1.08 * −0.77 ns −24.08 *** 3.65 * 0.68 ns −1.04 *** 0.12 ns
Salama M-57 × SARO 5 −4.80 *** 1.94 *** 3.78 ns 1.45 ** 0.15 ns 0.08 ns 7.16 *** 0.73 * −0.65 *** 0.21 ns

Salama M-57 ×Mwangaza 1.07 ns 0.38 ns 5.52 ns 0.67 ns 1.00 ns 10.35 ** −1,00 ns −0.45 ns 0.30 ns 0.07 ns
Salama M-57 × Salama M-55 −3.68 *** 0.91 ns −1.50 ns 0.83 ns −0.40 ns −27.40 *** −11.37 *** 0.14 ns 2.43 *** −0.70 ***

Salama M-57 × Gigante −1.01 ns −0.14 ns 2.36 ns −0.10 ns 0.07 ns −1.95 ns −6.09 *** −0.96 ** 0.63 * −0.17 ***
Salama M-57 × Salama M-19 −1.51 ns −0.75 ns 1.75 ns −0.21 ns −0.39 ns −18.02 *** −0.74 ** 0.73 * −0.57 * −0.36 ***

IRAT 256 × Rangimbili −8.97 *** −0.27 ns −9.43 ** 0.23 ns −1.40 ** 18.11 *** 11.35 *** 1.11 *** −2.45 *** 0.47 ***
IRAT 256 × Zambia −4.01 *** 1.93 *** 7.48 * 1.75 *** 0.24 ns 6.32 * 4.50 ** 0.02 ns −0.84 *** −0.33 ***
IRAT 256 × Lunyuki 5.96 *** 1.72 ** −5.42 ns 1.56 ** −0.11 ns −0.32 ns −9.19 *** 0.03 ns 2.57 *** −0.12 ns
IRAT 256 × SARO 5 2.40 * −0.15 ns 20.97 *** −0.43 ns 0.68 ns −4.94 ns −1.58 ns −0.23 ns 0.96 *** −0.16 ns

IRAT 256 ×Mwangaza 2.28 * −0.94 ns −2.04 ns −0.78 ns −0.34 ns 7.02 * 6.32 *** 0.58 ns −1.09 *** 0.42 ***
IRAT 256 × Salama M-55 −7.30 *** −0.47 ns 0.02 ns −0.39 ns 0.16 ns −41.50 *** −17.04 *** −0.17 ns 2.05 *** −0.82 ***

IRAT 256 × Gigante −7.97 *** 0.42 ns 1.73 ns 0.40 ns −0.10 ns 6.53 * −2.21 ns −0.43 ns 0.24 ns 0.06 ns
IRAT 256 × Salama M-19 1.36 ns 0.08 ns 2.12 ns 0.53 ns −0.82 ns −17.54 *** −15.62 *** −0.24 ns 3.71 *** −0.85 ***

Rangimbili × Zambia 0.81 ns 0.64 ns 1.05 ns 1.31 * −0.03 ns 4.88 ns −5.12 *** −0.49 ns −0.45 ns 0.14 ns
Rangimbili × Lunyuki −2.22 * −0.47 ns −3.36 ns −0.68 ns 0.35 ns 7.24 * 0.49 ns −0.14 ns −0.04 ns −0.55 ***
Rangimbili × SARO 5 −11.44 *** 0.92 ns −6.40 ns 0.58 ns −1.06 * −17.38 *** 0.81 ns 0.41 ns 0.35 ns 0.05 ns

Rangimbili ×Mwangaza −4.07 *** −1.23 * −12.37 *** −1.00 ns −2.13 *** −7.39 * 8.59 *** 1.57 *** −1.70 *** −0.06 ns
Rangimbili × Salama M-55 4.18 *** −0.04 ns 2.24 ns 0.05 ns 0.84 ns 12.09 *** 1.94 ns −0.35 ns 0.43 ns 0.76 ***

Rangimbili × Gigante 1.02 ns −0.14 ns −1.45 ns 0.01 ns −0.22 ns 19.09 *** 14.45 *** 0.39 ns −2.37 *** 0.91 ***
Rangimbili × Salama M-19 −1.48 ns −0.56 ns 3.08 ns −0.66 ns 0.28 ns −37.42 *** −12.69 *** 0.41 ns 1.77 *** −0.58 ***

Zambia × Lunyuki −6.26 *** 0.06 ns 1.95 ns 0.31 ns −0.10 ns −21.31 *** −8.99 *** −1.39 *** 0.57 * −0.19 ns
Zambia × SARO 5 −3.48 *** −0.20 ns 10.99 ** 0.41 ns 1.34 ** −5.65 ns −0.07 ns 0.33 ns 0.96 *** −0.08 ns

Zambia ×Mwangaza −5.78 *** −0.21 ns 0.67 ns 0.01 ns −0.51 ns −15.11 *** 7.88 *** −0.68 * −1.09 *** 0.26 *
Zambia × Salama M-55 3.31 *** −1.49 ** −9.25 * −1.50 ** −0.34 ns 8.30 ** 2.74 ns 0.07 ns 0.05 ns 0.34 ***

Zambia × Gigante −6.36 *** 0.65 ns 2.51 ns 0.49 ns 0.08 ns −8.97 *** −1.90 ns 0.14 ns −0.43 ns −0.00 ns
Zambia × Salama M-19 −15.86 *** 1.27 ** −0.48 ns 0.09 ns −0.60 ns −24.12 *** −4.65 ** −0.84 * 0.38 ns −0.56 ***

Lunyuki × SARO 5 4.15 *** 0.32 ns 1.01 ns 0.37 ns 0.60 ns 13.53 *** −6.44 *** 1.16 *** 1.38 *** 0.05 ns
Lunyuki ×Mwangaza −0.80 ns −0.10 ns −2.97 ns −0.58 ns −0.09 ns 17.69 *** 1.74 ns 1.34 *** −0.68 *** 0.41 ***

Lunyuki × Salama M-55 −1.55 ns 0.58 ns 1.49 ns 0.61 ns −0.68 ns −6.45 * 0.49 ns 0.41 ns 0.46 ns −0.13 ns
Lunyuki × Gigante −1.39 ns −0.79 ns 4.24 ns −0.68 ns 0.25 ns 4.50 ns 8.81 *** 0.15 ns −0.68 ** 0.13 ns

Lunyuki × Salama M-19 −2.22 * −0.35 ns −5.42 ns −0.77 ns −1.08 * −7.42 ** 2.42 ns 0.51 ns −0.54 * 0.22 **
SARO 5 ×Mwangaza 6.81 *** 0.78 ns 5.39 ns 0.65 ns 0.72 ns −16.27 *** 0.79 ns −1.61 *** −0.29 ns 0.15 ns

SARO 5 × Salama M-55 −15.28 *** −0.65 ns −13.22 *** −0.38 ns −0.34 ns 7.88 * 11.45 *** −0.86 ** −3.15 *** 0.28 *
SARO 5 × Gigante 6.06 *** 0.36 ns −8.54 ** 0.01 ns −0.60 ns 14.87 *** 5.07 ** −0.46 ns −0.29 ns 0.06 ns

SARO 5 × Salama M-19 −4.94 *** −0.25 ns 0.33 ns 0.20 ns 0.59 ns −6.38 * 2.03 ns −0.77 * −0.15 ns −0.14 ns
Mwangaza × Salama M-55 −1.57 ns 0.47 ns 4.43 ns 0.28 ns −0.15 ns −25.81 *** −20.16 *** −0.55 ns 3.13 *** −0.69 ***

Mwangaza × Gigante −0.57 ns 0.52 ns 9.53 * 0.08 ns 1.21 * −13.47 *** −14.83 *** −0.64 ns 2.32 *** −0.24 ***
Mwangaza × Salama M-19 −5.73 *** −0.91 ns 2.54 ns −0.66 ns 0.83 ns −2.78 ns 0.49 ns 0.55 ns −0.20 0.46 ***

Salama M-55 × Gigante −0.82 ns −0.36 ns 4.70 ns −0.56 ns −0.34 ns 11.27 *** 7.01 *** 0.27 ns −0.54 * −0.69 ***
Salama M-55 × Salama M-19 −11.98 *** 0.81 ns 2.51 ns 0.55 ns 0.23 ns 4.26 ns −1.41 *** −0.03 ns −0.73 ** −0.69 ***

Gigante × Salama M-19 0.35 ns −0.79 ns −0.39 ns −0.80 ns 0.42 ns 25.75 *** 14.20 *** 0.20 ns −0.87 *** 0.85 ***

Note: DF = degree of freedom; DFL = Days to 50% flowering; NT = number of tillers/plant; PH = plant height; NPP=number of
panicle/panicle; PL = panicle length; NGP = number of grains/panicle; PFG = percentage filled grains/panicle; TGW = 1000 grain weight;
RYMVD = rice yellow mottle virus disease reaction; GY = grain yield; * = p < 0.05; ** = p < 0.01; *** = p < 0.001; ns, non-significant.

4. Discussion
4.1. Analysis of Variance and Mean Performance of Genotypes

The significant differences for agronomic traits and RYMVD reaction among the
parental lines and their progenies (Table 4) indicated the existence of adequate genetic
variability for establishing a successful rice-breeding program. The observed variation is
underpinned by differences in genetic constitution among the parental lines, which may
have evolved from different gene pools, and provided useful segregants among the F2
progenies. The parental lines included landraces, accessions and varieties. The genetic
groups have different characteristics, which gave rise to the observed variation in the
F2. For instance, landraces are known to be segregating at numerous loci, while varieties
are the products of careful and deliberate selection that makes them very different from
landraces [33].

Genetic variability for agronomic traits such as DFL, NT, PH, NPP, NGP, TGW and
GY has been also reported in previous studies. For instance, Ref. [4] who found significant
genotypic variation among rice accessions evaluated in Bangladesh. Ref. [26] who found
significant genotypic variation for RYMV disease reaction and agronomic traits in rice in
Uganda. Ref. [34] who reported significant variation in yield and its contributing traits
in newly developed rice genotypes in China. In the present study, across sites variability
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was not detected for the RYMVD reaction among the test genotypes (Table 4). This was
attributed to the high disease pressure found at each of the test sites, ensuring even levels of
RYMVD infection and disease development. This is contrast to [11,35], who reported that
RYMV disease infection and disease development were affected by the test environments.
Nine crosses were highly resistant to RYMV disease, with scores of 1.0, indicating that
they possessed strong RYMV resistance, possessing the RYMV1 or RYMV2 genes, or
new resistance gene(s). Refs. [15,18] who reported the RYMV1 and RYMV2 genes were
responsible for resistance to RYMV disease in most African rice varieties. Families such as
Salama M-57× IRAT 256, Salama M-57× Lunyuki, Salama M-57× Salama M-19, IRAT 256
× Rangimbili, IRAT 256 ×Mwangaza, Rangimbili ×Mwangaza, Lunyuki ×Mwangaza
and SARO 5 × Salama M-55 were identified as new sources of RYMV resistance genes
for breeding.

There were significant genotype × location interaction effects for agronomic traits
across three test sites. For instance, crosses Rangimbili × Salama M-55 and Salama M-57
had the higher mean values for GY and NGP, respectively, at the Ilonga site than the Ifakara
and Mkindo sites. This was probably because different rainfall and temperature conditions
existed between the three locations, the highest rainfall being at the Ilonga site. Rainfall
and air temperature affected rice yield responses in the Guinea Savannah Zone [36]. Yield
components are quantitative traits and their expressions is affected by the genotype ×
environment interactions. Rice genotypes were evaluated in Nigeria yielding significant
environmental influence on agronomic performance [37]. The significant genotype ×
environment interaction effects provides opportunities to identify genotypes with specific
or broad adaptation. Some of the crosses, such as Salama M-57 × IRAT 256, Rangimbili
× Salama M-55, Rangimbili × Gigante, Salama M-55 × Gigante, and Gigante × Salama
M-19, performed well at all three sites with a high level of stability. Such genotypes would
be ideal for developing cultivars with broader yield stability across sites. There is an
opportunity to select transgressive segregants amongst the new families. The cross Salama
M-57 × IRAT 256 yielded better than the parents across test environments, indicating
superior genetic combinations.

Selection of superior rice genotypes across sites should target multiple traits including
NT, PL, NGP, PFG and TGW, aiming to increase adaptability to biotic and abiotic stresses.
Crosses such as Salama M-57 × IRAT 256, Salama M-19 × Gigante, Rangimbili × Gigante,
Rangimbili × Salama M-55, Salama M-55 × Gigante, IRAT 256 × Rangimbili and IRAT
256 ×Mwangaza exhibited desirable grain yield and RMVD resistance, which make them
suitable candidates for breeding.

4.2. Combining Ability Effects and Gene Action

Establishment of a successful breeding program depends on the magnitude of the
combining ability effects of parents and trait heritability to the offspring. The study
found significant GCA and SCA effects for all the traits, indicating that both additive and
non-additive gene actions condition the inheritance of RYMV resistance and the tested
agronomic traits. This implies that crosses and recurrent selection programs can be used
to exploit both additive and non-additive gene action to enhance grain yield in rice. The
GCA effects indicate that selection of high performing parents would contribute to the
generation of superior crosses for cultivar development. Previous studies reported the
significance of both additive and non-additive gene action in the expression of agronomic
and yield traits [38–40]. The GCA and SCA effects exhibited variability across sites showing
that environmental variance influenced the ability of parents to pass favorable traits
to their offspring. The high GCA: SCA ratios calculated for all the traits in this study
indicated that additive gene effects were preponderant over non-additive gene effects,
and therefore a recurrent selection approach would be effective for trait improvement.
Similarly, [41] who found that additive gene action was preponderant for several agronomic
traits including DFL, NT, NGP, PFG and GY. Other studies have reported that additive
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gene action has a predominant role in the inheritance of agronomic traits and RYMVD
resistance in rice [4,26,42,43].

4.3. General Combining Ability Effects of Parents for RYMV Resistance and Agronomic Traits

The selection of parents based on per se performance does not always result in produc-
ing superior crosses [44]. The combining ability effects of parents are useful in selecting
parents that can potentially improve target traits in the offspring. Selection is often based
on mean performance in one or several environments but per se performance may not
always result in the generation of superior crosses. Genotypes such as Mwangaza, IRAT
256 and Lunyuki exhibited negative GCA effects for DFL, indicating that they had the
genetic potential to reduce the average number of days to flowering. Early flowering has
significant benefits by escaping terminal drought stress if seasonal rains end early. Similarly,
Ref. [45] who found negative GCAs for DFL and PH. Gigante, SARO 5 and Mwangaza
were selected as good combiners for PH displaying negative GCA effects for shortness.
Therefore, significant negative GCA effects for DFL and PH are useful for the develop-
ment of early dwarf varieties that are preferred in rainfall-constrained environments to
escape potential drought stress. Parents SARO 5 and IRAT 256 were identified as good
combiners for NT and NPP, expressing higher and positive GCA effects. Also, Ref. [45]
who reported significant positive GCA effects for NT and NPP. The parental lines exhibited
high and positive GCA effects for PL, NGP. PFG and TGW, suggesting their desirability for
improvement of yield-related components because of their greater contribution of these
traits to high grain yield. Previous studies reported the significance of using parents with
high and positive GCA effects for the improvement of agronomic traits [40,46]. Parental
lines with negative scores for RYMVD were considered the best combiners for increasing
RYMV resistance. Ref. [47] who reported that negative GCA and SCA effects are desirable
for disease resistance. The parents Mwangaza, Lunyuki, Salama M-57, Salama M-19, IRAT
256 and Salama M-55 were selected as good combiners for RYMVD resistance due to their
negative GCA effects. These genotypes may possess the RYMV1 and RYMV2 genes or novel
gene(s) responsible for RYMV resistance. These could be useful as sources of RYMV resis-
tance in developing new cultivars suitable under Tanzanian growing conditions. Ref. [26]
who reported significant GCA effects for resistance to RYMV. Salama M-57, IRAT 256 and
Salama M-19 had high and positive GCA effects for grain yield, suggesting that the selected
parental genotypes were good general combiners for grain yield by contributing favorable
alleles. Previous studies also reported good general combiners for yield and yield traits in
rice genotypes [41]. These genotypes could be regarded as good sources of additive genes
for grain yield improvement [43].

4.4. Specific Combining Ability Effects

A high value of the SCA effect of a cross for a particular trait reflects the contribution
of non-additive gene action. This genetic parameter is particularly important for hybrid
breeding [22]. Crosses with significant SCA effects in the desired direction would warrant
further field evaluation to identify the best segregants. Crosses with high SCA effects are
important targets for selection of transgressive segregants [48]. The crosses Zambia ×
Salama M-19, SARO 5 × Salama M-55, Salama M-55 × Salama M-19 and Rangimbili ×
SARO 5 were selected for their negative SCA effect for DFL. These are early flowering
genotypes that reduce exposure to terminal drought. Salama M-57 × SARO 5, IRAT256
× Zambia, IRAT 256 × Lunyuki and Zambia × Salama M-19 were selected with better
NT. Negative SCA effects are required for PH to develop short stature cultivars. Thus, the
crosses SARO 5 × Salama M-55, Rangimbili ×Mwangaza, IRAT 256 × Rangimbili and
SARO 5× Gigante were selected to develop ideotypes with medium height plants. Crosses
IRAT 256 × Zambia, IRAT 256 × Lunyuki and Salama M-57 × SARO 5 were selected for
their desirable SCA effects for NPP. Further, crosses Zambia × SARO 5, Mwangaza ×
Gigante and Salama M-57 × Rangimbili were best specific combiners for PL. Salama M-57
× IRAT 256, Gigante × Salama M-19, Rangimbili × Gigante and IRAT 256 × Rangimbili
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had superior NGP values, supported by their high and positive SCA effects. Rangimbili
× Gigante, Gigante × Salama M-19, SARO 5 × Salama M-55 and IRAT 256 × Rangimbili
were selected with better PFG scores. Crosses Rangimbili ×Mwangaza, Lunyuki × SARO
5, and IRAT 256 × Rangimbili were the best specific combiners for TGW. The best crosses
expression of RYMV resistance were SARO 5 × Salama M-55, IRAT 245 × Rangimbili,
Rangimbili × Gigante, Rangimbili × Mwangaza and Salama M-57 × IRAT 256. These
crosses had significantly lower and negative SCA effect for RYMVD possessing RYMV
resistance genes (Table 7). The hybrids Rangimbili × Gigante, Gigante × Salama M-19,
Rangimbili × Salama M-55 and Salama M-57 × IRAT 256 were good specific combiners
for grain yield because they expressed high SCA effects for grain yield. In a previous
study [40] superior SCA effects were reported for grain yield in rice varieties. Crosses
selected with desirable SCA effects for RYMVD, GY, PFG and NGP can be used to generate
new rice varieties. The families Rangimbili × Gigante and Salama M-57 × IRAT 256 are
recommended for further breeding or production in RYMV endemic agro-ecologies in
Tanzania or similar agro-ecologies.

5. Conclusions

The present study found marked differences in the performance of the test parents and
their families. Significant GCA and SCA effects were detected for the assessed traits among
tested crosses and parents, which implies that both additive and non-additive effects in-
fluence these traits in the selected parents and crosses, in that order. The predominance
of additive gene effects for RYMVD resistance and agronomic traits in the studies breed-
ing populations suggested that rice improvement could best be achieved through gene
introgression via the recurrent selection method. Parents Mwangaza, Lunyuki, Salama
M-57, Salama M-19, IRAT 256 and Salama M-55 had negative GCA effects are good general
combiners for RYMVD resistance and are recommended for future breeding programs
and ago-ecologies of Tanzania infested with RYMV disease. Parental lines Salama M-57,
IRAT 256, and Salama M-19 are suggested for future breeding program for GY. Based on
the SCA effects, among the families, good specific combiners included SARO 5 × Salama
M-55, IRAT 245 × Rangimbili, Rangimbili × Gigante and Rangimbili ×Mwangaza had
negative SCA effects for RYMVD, which could be useful for selection of RYMVD resistant
progenies. The crosses Rangimbili × Gigante, Gigante × Salama M-19 and Rangimbili
× Salama M-55 are good specific combiners for GY. Overall, the selected promising rice
parents and families with significant GCA and SCA effects in the desired direction will be
useful genetic resources of RYMV resistance for further breeding or production in RYMV
endemic agro-ecologies. Further stability tests and farmers participatory evaluation of the
selected genotypes across representative growing environments are required in developing
lines with farmer-preferred traits, resistance to RYMV and high yields. This will allow
recommendation of new lines adapted to specific or broad rice environments in Tanzania.
Further evaluations in multiple test environments ensures selection of RYMV resistant
lines with limited disease escape.
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