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In this paper, we study the finite temperature-dependent Schrödinger equation by using the Nikiforov-Uvarov method. We
consider the sum of the Cornell, inverse quadratic, and harmonic-type potentials as the potential part of the radial Schrödinger
equation. Analytical expressions for the energy eigenvalues and the radial wave function are presented. Application of the results
for the heavy quarkonia and Bc meson masses are in good agreement with the current experimental data except for zero angular
momentum quantum numbers. Numerical results for the temperature dependence indicates a different behaviour for different
quantum numbers. Temperature-dependent results are in agreement with some QCD sum rule results from the ground states.

1. Introduction

It is a well-known fact that the potential models in quantum
mechanics are very accurate in reproducing experimental
data for meson spectroscopy [1] at zero temperature. How-
ever, one needs to consider spin-dependent potentials in
the Schrödinger equation in order to describe the relativistic
effects [2, 3]. There exist few potentials which are highly
important because of their exact solubility within the Schrö-
dinger equation for which all spectra of radial nr and orbital l
quantum states can be obtained analytically [2–5]. Except for
the exact solvable potentials, others are solved by either
approximation or numerical methods.

Several potentials such as the exponential-type including
the Hulthén-, Manning–Rosen-, Woods–Saxon-, and Eckart-
type potentials are also currently being investigated by
several researchers. Among the particularly interesting
potentials which play an important role in the quark-
antiquark bound states include the so-called Cornell poten-
tial and a mixture of it with the harmonic oscillator potential
and Morse potential as discussed in [6–10].

As an analytical method, the Nikiforov-Uvarov (NU)
method is one of the widely applicable methods for solving
the Schrödinger equation. The quarkonia system in a hot
and dense matter media is studied in Ref. [11], where the
authors studied the quarkonium dissociation in anisotropic
plasma in hot and dense media by analytically solving the
multidimensional Schrödinger equation via the NU method
for the real part of the potential. The NU method was suc-
cessfully applied for solving the radial Schrödinger equation
in the presence of an external magnetic field and the
Aharonov-Bohm flux fields in [12, 13]. The inverse square
root potential, which is a long-range potential and a combi-
nation of the Coulomb, linear, and harmonic potentials, is
often used to describe quarkonium states.

The study of the heavy quark resonances in a nonrelativ-
istic regime and the thermal environment shows the impor-
tance of the color screening radius below which binding is
impossible [14]. The theoretical investigation of this effect
for the charmonium resonance is investigated in [15]. Con-
sidering the finite temperature for the Cornell potential
within the D-dimensional Schrödinger equation by using
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the NU method is presented in [16]. However, the behaviour
of bound states of heavy quarks in a strongly interacting
medium close to the deconfinement temperature Tc is largely
uncertain such that various models predict the mass being
constant, increasing and decreasing with temperature incre-
ments. One of the first applications of a nonrelativistic lattice
QCD to the study of heavy quarkonia at finite temperature is
presented in [17].

Temperature-dependent Schrödinger equations for dif-
ferent potentials by different methods are studied in [18–
21]. In Ref. [22] a modified radial Schrödinger equation for
the sum of the Cornell and inverse quadratic potentials at
finite temperature is solved. In Refs. [23, 24], the radial and
hyperradial Schrödinger equations are analytically solved
using the NU and SUSYQM methods, in which the heavy
quarkonia potential is introduced at finite temperature with
the baryon chemical potential. For numerical solutions, one
may, for instance, have a look in [25].

The Cornell potential is extensively used to describe the
mass spectrum of the heavy quark and antiquark systems at
zero temperature [26, 27]. It is the sum of linear and Cou-
lomb terms which are responsible for the confinement and
quark-antiquark interaction at short distances, respectively.

The bound state solutions to the wave equations under
the quark-antiquark interaction potential such as the ordi-
nary, extended, and generalized Cornell potentials and com-
bined potentials such as the Cornell with other potentials
have attracted much research interest in atomic and high-
energy physics within ordinary and supersymmetric quan-
tum mechanics methods as in [28–35].

Recently, Ikot et al. [36] reported the approximate solu-
tions of the Schrödinger equation with the central general-
ized Hulthén and Yukawa potential within the framework
of the functional method. The obtained wave function and
the energy levels are used to study the Shannon entropy,
the Renyi entropy, the Fisher information, the Shannon-
Fisher complexity, the Shannon power, and the Fisher-
Shannon product in both position and momentum spaces
for the ground and first excited states.

The exact solution of the Schrödinger equation for the
new anharmonic oscillator, double ring-shaped oscillator,
and quantum system with a nonpolynomial oscillator poten-
tial related to the isotonic oscillator was also widely studied in
Refs. [37–39]. The relativistic Levinson theorem was also
studied in detail in Ref. [40], and the authors obtained the
modified relativistic Levinson theorem for noncritical cases.

It is still an open question if the appropriate potential
which describes the interaction between a quark and an
antiquark can be found more precisely. It would be interest-
ing to test the following potential for the arbitrary orbital
quantum number l ≠ 0 at finite temperature by using the
NU method [41]:

V rð Þ ≡ A · r − B
r
+ C
r2

+D · r2: ð1Þ

Here, A, B, C, and D are constant potential parameters,
respectively.

The rest of the paper is organized as follows. The
temperature-dependent radial Schrödinger equation for the
sum of the Cornell, inverse quadratic, and harmonic
oscillator-type potentials is introduced in Section 2 and
solved using the NU method in Section 3. In Section 4, we
apply the results to themass spectrum of heavymesons at zero
and nonzero temperatures in Section 5, respectively. Finally,
we end up with some concluding remarks in Section 6.

2. Temperature-Dependent Radial
Schrödinger Equation

The Schrödinger equation in spherical coordinates is given as
follows:

∇2ψ + 2μ
ℏ2

E − V rð Þ½ �ψ r, θ, ϕð Þ = 0: ð2Þ

For the case of the separation of the wave function to the
radial and angular parts, we can write the wave function as
follows:

ψ r, θ, ϕð Þ = R rð ÞYl,m θ, ϕð Þ: ð3Þ

Consideration of the radial part of the wave function and
the Cornell, inverse quadratic, and harmonic-type potentials
for the potential part of the Schrödinger equation leads to the
following:

R″ rð Þ + 2
r
R′ rð Þ + 2μ

ℏ2
E −

l l + 1ð Þℏ2
2μr2 −V rð Þ

" #
R rð Þ = 0: ð4Þ

This equation gets the following form if we do the
replacement for the radial part of the wave function RðrÞ ≡
χðrÞ/r in (4):

χ″ rð Þ + 2μ
ℏ2

E −
ℏ2

2μ
l l + 1ð Þ
r2

− V rð Þ
" #

χ rð Þ = 0, ð5Þ

where μ is the reduced mass of the quark-antiquark system
which is defined in this form: 1/μ = 1/μq + 1/μ�q.Following

the same philosophy for the Cornell potential in [17], one
can do the nonzero temperature modification to the constant
terms in equation (1) and make the potential term tempera-
ture dependent as follows:

V T , rð Þ ≡ A T , rð Þ · r − B T , rð Þ
r

+ C T , rð Þ
r2

+D T , rð Þ · r2, ð6Þ
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where

A T , rð Þ ≡ A
μD Tð Þ · r 1 − exp −μD Tð Þrf gð Þ,

B T , rð Þ ≡ B exp −μD Tð Þrf g,
C T , rð Þ ≡ C exp −μD Tð Þrf g,

D T , rð Þ ≡ D
μD Tð Þ · r 1 − exp −μD Tð Þrf gð Þ:

ð7Þ

Here, μDðTÞ is the Debye screening mass, which vanishes at
T ⟶ 0. It should be noted that, in this model, the tempera-
ture dependence of a potential is contained in a Debye
screened mass. Next, using the approximation exp ð−μDðTÞ
rÞ =∑∞

n=0 ðð−μDðTÞrÞn/n!Þ up to the second order, which
gives a good accuracy when μDðTÞr≪ 1, we then obtain the
following:

A T , rð Þ ≡ A
μD Tð Þ · r 1 − exp −μD Tð Þrf gð Þ = A −

A
2 μD Tð Þr,

B T , rð Þ ≡ B exp −μD Tð Þrf g = B 1 − μD Tð Þr + 1
2 μ

2
D Tð Þr2

� �
,

C T , rð Þ ≡ C exp −μD Tð Þrf g = C 1 − μD Tð Þr + 1
2 μD Tð Þr2

� �
,

D T , rð Þ ≡ D
μD Tð Þ · r 1 − exp −μD Tð Þrf gð Þ =D −

D
2 μD Tð Þr2:

ð8Þ

Then, for VðT , rÞ, we obtain the following:

V T , rð Þ = BμD Tð Þ + 1
2Cμ

2
D Tð Þ

+ A −
1
2Bμ

2
D Tð Þ

� �
r − B + CμD Tð Þð Þ 1

r

−
1
2AμD Tð Þ −D
� �

r2 + C
r2

−
D
2 μD Tð Þr3:

ð9Þ

As can be seen from the expressions in (8) at T = 0 zero
temperature, AðT = 0Þ = A, BðT = 0Þ = B, CðT = 0Þ = C, and
DðT = 0Þ =D.

By using the expressions in (8), we may rewrite expres-
sion (6) in a more compact way as follows:

V T , rð Þ = F + Gr −
L
r
−Mr2 + C

r2
−Nr3, ð10Þ

where we used the following substitutions:

F ≡ BμD Tð Þ + 1
2Cμ

2
D Tð Þ,

G ≡A −
1
2Bμ

2
D Tð Þ,

L ≡ B + CμD Tð Þ,

M ≡
1
2AμD Tð Þ −D,

N ≡
D
2 μD Tð Þ:

ð11Þ

Considering all these in the radial Schrödinger equation
(5), we get the following:

χ″ rð Þ + 2μ
ℏ2

E −
ℏ2

2μ
l l + 1ð Þ
r2

− F −Gr + L
r
+Mr2 −

C
r2

+Nr3
" #

χ rð Þ = 0:

ð12Þ

Let us reduce the above equation to the generalized hyper-
geometric type [41]:

χ″ sð Þ + ~τ

σ
χ′ sð Þ + ~σ

σ2
χ sð Þ = 0: ð13Þ

In order to do that, we do the replacement r = ð1/xÞ in equa-
tion (12) which leads to the following:

χ″ xð Þ + 2x
x2

χ′ xð Þ + 2μ
ℏ2

1
x4

E −
ℏ2

2μ l l + 1ð Þx2 − F

"

−
G
x
+ Lx + M

x2
− Cx2 + N

x3

�
χ xð Þ = 0:

ð14Þ

For the solution in equation (14), we introduce the fol-
lowing approximation scheme on the terms G/x, M/x2, and
N/x3. Let us consider a characteristic radius r0 of the quark
and antiquark system; it is the minimum interval between
two quarks at which they cannot collide with each other. This
scheme is based on the expansion ofG/x,M/x2, andN/x3 in a
power series around r0 or δ = 1/r0 in the x-space, up to the
second order. One should note that the G-, M-, and N
-dependent terms save the original form of equation (14).
This approach is similar to the Pekeris approximation [42],
which causes a deformation of the centrifugal potential.
Hence, after this modified potential, equation (14) can be
solved by the NU method. This expansion is done for the
new variable y = x − δ, where δ = 1/r0 around y = 0 as follows:

G
x
= G
y + δ

= G
δ

1 − y
δ
+ y2

δ2

� �

= G
δ

1 − x − δ

δ
+ x − δð Þ2

δ2

 !

=G
3
δ
−
3x
δ2

+ x2

δ3

� �
,

ð15Þ

M
x2

= M

y + δð Þ2

= M

δ2
1 + y

δ

� �−2
=M

6
δ2

−
8x
δ3

+ 3x2
δ4

� �
,

ð16Þ
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N
x3

= N

y + δð Þ3

= N

δ3
1 + y

δ

� �−3
=N

10
δ3

−
15x
δ4

+ 6x2
δ5

� �
:

ð17Þ

We get the following equation by substituting equations
(15), (16), and (17) into equation (14):

χ″ xð Þ + 2x
x2

χ′ xð Þ + 2μ
ℏ2

1
x4

E − F −
3G
δ

+ 6M
δ2

+ 10N
δ3

� ��

+ 3G
δ2

+ L −
8M
δ3

−
15N
δ4

� �
x

+ −
ℏ2

2μ l l + 1ð Þ − G

δ3
+ 3M

δ4
+ 6N

δ5
− C

 !
x2
#
χ xð Þ = 0: 

ð18Þ

In equation (18), we introduce new variables for making
the differential equation more compact:

H ≡ −
2μ
ℏ2

E − F −
3G
δ

+ 6M
δ2

+ 10N
δ3

� �
,

P ≡
2μ
ℏ2

3G
δ2

+ L −
8M
δ3

−
15N
δ4

� �
,

ð19Þ

Q ≡
2μ
ℏ2

−
ℏ2

2μ l l + 1ð Þ − G

δ3
+ 3M

δ4
+ 6N

δ5
− C

 !
: ð20Þ

Finally, equation (18) gets the following more compact
form:

χ″ xð Þ + 2x
x2

χ′ xð Þ + 1
x4

−H + Px +Qx2
� 	

χ xð Þ = 0: ð21Þ

3. NU Method Application

In this section, we will apply the NU method for defining the
energy eigenvalues. A comparison of equation (21) and equa-
tion (13) leads us to the following redefinitions:

~τ xð Þ = 2x,
σ xð Þ = x2,
~σ xð Þ = −H + Px +Qx2


 �
:

ð22Þ

Consider the following factorization:

χ xð Þ = ϕ xð Þy xð Þ: ð23Þ

For the appropriate function ϕðxÞ, (21) takes the form of
the well-known hypergeometric-type equation. The appro-
priate ϕðxÞ function has to satisfy the following condition:

ϕ′ xð Þ
ϕ xð Þ = π xð Þ

σ xð Þ , ð24Þ

where function πðxÞ is the maximum degree of a polynomial
with one variable and is defined as follows:

π xð Þ = σ′ − ~τ

2 ±

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ′ − ~τ

2

 !2

− ~σ + kσ

vuut
= 2x − 2x

2 ±
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H − Px −Qx2 + kx2

p
= ±

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k −Qð Þx2 − Px +H

p
:

ð25Þ

Finally, we get the following hypergeometric-type equation:

σ xð Þy″ xð Þ + τ xð Þy′ xð Þ + �λy xð Þ = 0, ð26Þ

where �λ and τðxÞ read

�λ = k + π′ xð Þ,
τ xð Þ = ~τ xð Þ + 2π xð Þ:

ð27Þ

The constant parameter k can be defined by utilizing the con-
dition that the expression under the square root has a double
zero, i.e., its discriminant is equal to zero. Hence, we obtain
the following:

k = 1
4H P2 + 4HQ

 �

: ð28Þ

Now, substituting equation (28) into equation (25) leads us
to the following expression for πðxÞ:

π xð Þ = −
1

2
ffiffiffiffi
H

p Px − 2Hð Þ: ð29Þ

According to the NU method, out of the two possible forms
of the polynomial πðxÞ, we select the one for which the func-
tion τðxÞ has the negative derivative. Another form is not
suitable for physical reasons. Therefore, the suitable func-
tions for πðxÞ and τðxÞ have the following forms:

π xð Þ = −
1

2
ffiffiffiffi
H

p Px − 2Hð Þ,

τ xð Þ = 2x − Pxffiffiffiffi
H

p + 2
ffiffiffiffi
H

p
,

ð30Þ

and their derivatives are as follows:

π′ xð Þ = −
P

2
ffiffiffiffi
H

p ,

τ′ xð Þ = 2 − Pffiffiffiffi
H

p :

ð31Þ
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We can define the constant �λ from equation (27) which reads
as follows:

�λ = P2

4H +Q −
P

2
ffiffiffiffi
H

p : ð32Þ

Given a nonnegative integer nr , the hypergeometric-type
equation has a unique polynomial solution of degree n if

�λ = �λn = −nτ′ − n n − 1ð Þ
2 σ″, for n = 0, 1, 2⋯ : ð33Þ

with the condition �λm ≠ �λn for m = 0, 1, 2,⋯, n − 1. Further-
more, it follows that

�λnr = −nr 2 − Pffiffiffiffi
H

p
� �

− nr nr − 1ð Þ

= −2nr +
Pffiffiffiffi
H

p nr − n2r + nr

=
ffiffiffi
P

p
ffiffiffiffi
H

p nr − nr nr + 1ð Þ,

ð34Þ

P2

4H +Q −
P

2
ffiffiffiffi
H

p = Pffiffiffiffi
H

p nr − nr nr + 1ð Þ: ð35Þ

We can solve equation (35) explicitly for H and get the fol-
lowing:

ffiffiffiffi
H

p
= P

1 + 2nð Þ ± ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4Q

p : ð36Þ

Substituting equation (36) into equation (19) we obtain the
following:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−
2μ
ℏ2

E − F −
3G
δ

+ 6M
δ2

+ 10N
δ3

� �s
= P

1 + 2nð Þ ± ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4Q

p :

ð37Þ

From this equation, we can get the energy spectrum as
follows:

Table 1: Mass spectra of charmonium resonances in GeV.

States Present paper Experimental results [44] States Present paper Experimental results [44]

J/ψ 1sð Þ 3:098 3:097 1p 3:256 3:511
ψ 2sð Þ 3:687 3:686 2p 3:780 3:922
3s − ψ 4040ð Þ 4:042 4:039 3p 4:100
4s − ψ 4260ð Þ 4:272 4:259 4p 4:310
5s − ψ 4415ð Þ 4:429 4:421 5p 4:456
6s 4:540 1d 3:505 3:774

Table 2: Mass spectra of bottomonium resonances in GeV.

States Present paper Experimental results [44] States Present paper Experimental results [44]

Y 1sð Þ 9:460 9:460 1p 9:619 9:899
Y 2sð Þ 10:023 10:023 2p 10:114 10:260
Y 3sð Þ 10:355 10:355 3p 10:411
Y 4sð Þ 10:567 10:579 4p 10:604
7s − Y 10860ð Þ 10:887 10:885 5p 10:736
10s − Y 11020ð Þ 11:021 11:020 1d 9:863 10:164

E = F + 3G
δ

−
6M
δ2

−
10N
δ3

−
ℏ2

2μ
2μ/ℏ2

 �

3G/δ2

 �

+ L − 8M/δ3

 �

− 15N/δ4

 �
 �

1 + 2nrð Þ +
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 + 4l l + 1ð Þ + 8μ/ℏ2


 �
G/δ3

 �

− 24μ/ℏ2

 �

M/δ4

 �

− 48μ/ℏ2

 �

N/δ5

 �

+ 8μ/ℏ2

 �

C
q

2
64

3
75
2

: ð38Þ
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We would like to note that the N-dimensional radial Schrö-
dinger equation for the same potential is solved in [32],
which should be the same as our result for N = 3 at zero tem-
perature. Similar work with the Wentzel-Kramers-Brillouin
approximation method has been studied at T = 0 tempera-
ture in [43]. At T = 0, the zero temperature limit of equation
(38) reads as follows:

E = 3A
δ

+ 6D
δ2

−
ℏ2

2μ

� 2μ/ℏ2

 �

3A/δ2

 �

+ B + 8D/δ3

 �
 �

1 + 2nrð Þ +
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 + 4l l + 1ð Þ + 8μ/ℏ2


 �
A/δ3

 �

+ 24μ/ℏ2

 �

D/δ4

 �

+ 8μ/ℏ2

 �

C
q

2
64

3
75
2

:

ð39Þ

If we take C = 0 in equation (39), we then obtain the follow-
ing:

E = 3A
δ

+ 6D
δ2

−
ℏ2

2μ

� 2μ/ℏ2

 �

3A/δ2

 �

+ B + 8D/δ3

 �
 �

1 + 2nrð Þ +
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 + 4l l + 1ð Þ + 8μ/ℏ2


 �
A/δ3

 �

+ 24μ/ℏ2

 �

D/δ4

 �q

2
64

3
75
2

:

ð40Þ

If we take D = 0 in equation (39), we get [22]

E = 3A
δ

−
ℏ2

2μ

� 2μ/ℏ2

 �

3A/δ2

 �

+ B

 �

1 + 2nrð Þ +
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 + 4l l + 1ð Þ + 8μ/ℏ2


 �
A/δ3

 �

+ 8μ/ℏ2

 �

C
q

2
64

3
75
2

:

ð41Þ

If we take C = 0 and D = 0 in equation (39) we obtain the
same result as follows [6]:

E = 3A
δ

−
ℏ2

2μ
2μ/ℏ2

 �

3A/δ2

 �

+ B

 �

1 + 2nrð Þ +
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 + 4l l + 1ð Þ + 8μ/ℏ2


 �
A/δ3

 �q

2
64

3
75
2

:

ð42Þ

We can also find the radial eigenfunctions by applying
the NU method. The relevant πðsÞ function must satisfy the
following condition:

ϕ′ xð Þ
ϕ xð Þ = π xð Þ

σ xð Þ =
± Px/2

ffiffiffiffi
H

p� �
−

ffiffiffiffi
H

p� �
x2

= ± P

2
ffiffiffiffi
H

p
x
−

ffiffiffiffi
H

p

x2

 !
:

ð43Þ

It is not a complicated task to find the following result, after
substituting πðxÞ and σðxÞ into equation (43) and solving a
first-order differential equation:

ϕ xð Þ = x P/2 ffiffiffiHpð Þe−
ffiffiffi
H

p /xð Þ: ð44Þ

Furthermore, the other part of the wave function ynðxÞ is the
hypergeometric-type function whose polynomial solutions
are given by the Rodrigues relation:

yn xð Þ = Cn

ρ xð Þ
dn

dxn
σn xð Þρ xð Þ½ �, ð45Þ

Table 3: Mass spectra of b�c resonances in GeV.

States
Present
paper

Experimental results
[44]

States
Present
paper

B+
C 1sð Þ 6:277 6:275 1p 6:593

BC 2sð Þ± 6:763 6:872 2p 6:875
3s 6:945 3p 6:700
4s 7:033 4p 7:061
5s 7:081 5p 7:098
6s 7:111 1d 6:831
Experimental Results [44].

Table 4: Mass spectra of charmonium in GeV.

State Present
paper

D = 0
[22]

C = 0
[6]

[45] [46] [7]
Exp.
[44]

1s 3.098 3.097 3.096 3.068 3.078 3.096 3.097

2s 3.687 3.687 3.686 3.697 3.581 3.686 3.686

3s 4.042 4.041 4.040 4.144 4.085 3.984 4.039

4s 4.271 4.271 4.269 4.589 4.150 4.421

5s 4.428 4.428 4.425

1p 3.256 3.256 3.255 3.526 3.415 3.433 3.511

2p 3.780 3.780 3.779 3.993 3.917 3.910 3.922

3p 4.100 4.100

4p 4.310 4.310

5p 4.456 4.456

1d 3.505 3.505 3.504 3.829 3.749 3.767 3.774

Table 5: Mass spectra of bottomonium in GeV.

State Present
paper

D = 0
[22]

C = 0
[6]

[45] [46] [7]
Exp.
[44]

1s 9.460 9.459 9.460 9.447 9.510 9.460 9.460

2s 10.023 10.022 10.023 10.012 10.038 10.023 10.023

3s 10.355 10.354 10.355 10.353 10.566 10.280 10.355

4s 10.567 10.566 10.567 10.629 11.094 10.420 10.579

5s 10.710 10.710 6578

1p 9.619 9.618 9.619 9.900 9.862 9.840 9.899

2p 10.114 10.113 10.114 10.260 10.390 10.160 10.260

3p 10.411 10.411

4p 10.604 10.604

5p 10.736 10.736

1d 9.863 10.257 9.864 10.155 10.214 10.140 10.164
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where Cn is a normalizing constant and ρðxÞ is the weight
function which is the solution of the Pearson differential
equation. The Pearson differential equation and ρðxÞ for
our problem is given as follows:

σρð Þ′ = τρ: ð46Þ

Therefore, we use equation ((46)) to find the second part of
the wave function from the definition of weight function:

ρ xð Þ = x −P/ ffiffiffiHpð Þe −2 ffiffiffiHp /xð Þ: ð47Þ

Considering both parts of the wave function ϕðxÞ and ynr ðxÞ
within equation (23), we obtain the following:

χnr
xð Þ = Cnrl

· x P/2 ffiffiffiHpð Þ · e
ffiffiffi
H

p /xð Þ · dn

dxn
x2n− P/ ffiffiffiHpð Þe −2 ffiffiffiHp /xð Þ
h i

:

ð48Þ

As the last step, we do the replacement x = 1/r, and using χ
ðrÞ = rRðrÞ in equation (48) we get the following:

χnr
rð Þ = Cnrl

· r− P/2 ffiffiffiHpð Þe
ffiffiffi
H

p ·r −r2
d
dr

� �n

r−2n+ P/ ffiffiffiHpð Þe−2
ffiffiffi
H

p ·r
h i

:

ð49Þ

The final form of the radial wave function RðrÞ reads:

R rð Þ = Cnrl
· r−1− P/2 ffiffiffiHpð Þe

ffiffiffi
H

p ·r −r2
d
dr

� �n

r−2n+ P/ ffiffiffiHpð Þe−2
ffiffiffi
H

p ·r
h i

:

ð50Þ

4. Mass Spectrum of the Heavy Quarkonium

We calculate the mass spectra of the heavy quarkonium sys-
tem, for example, charmonium and bottomonium mesons
that are the bound state of quarks and antiquarks. For this
we apply the following relation:

M =mq +m�q + E, ð51Þ

where m is the bare mass of a heavy quark. Using expres-
sion (39) for the energy spectrum in (51) we get the
following equation for heavy quarkonia mass at finite
temperature:

Depending on the system which we want to study, we may
consider that mq and m�q are the bare masses of quarks and

antiquarks correspondingly and E is the energy of the system.

By replacing T = 0, we obtain the meson mass at zero
temperature:

Numerical values for the charmonium mass spectra are pre-
sented in Table 1

In this table, we considered the bare mass of the
charm quark as mc = 1:209GeV, and the constant terms
fitted with the experimental data via equation (53) as
A = 0:2GeV2, B = 1:244, C = 2:9 × 10−3, D = 1:4 × 10−5,

and δ = 0:231GeV. If we apply formula (53) to the
bottomonium case with the bare mass mb = 4:823GeV,
and the experiment fitted constants use equation (53)
as A = 0:2GeV2, B = 1:569, C = 2:0 × 10−3, D = 1:4 × 10−5,
and δ = 0:378GeV, we obtain the following results
shown in Table 2.

M =mq +m�q + F + 3G
δ

−
6M
δ2

−
10N
δ3

−
ℏ2

2μ
2μ/ℏ2

 �

3G/δ2

 �

+ L − 8M/δ3

 �

− 15N/δ4

 �
 �

1 + 2nð Þ +
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 + 4l l + 1ð Þ + 8μ/ℏ2


 �
G/δ3

 �

− 24μ/ℏ2

 �

M/δ4

 �

− 48μ/ℏ2

 �

N/δ5

 �

+ 8μ/ℏ2

 �

C
q

2
64

3
75
2

: ð52Þ

M =mq +m�q +
3A
δ

+ 6D
δ2

−
ℏ2

2μ
2μ/ℏ2

 �

3A/δ2

 �

+ B + 8D/δ3

 �
 �

1 + 2nð Þ +
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 + 4l l + 1ð Þ + 8μ/ℏ2


 �
A/δ3

 �

+ 24μ/ℏ2

 �

D/δ4

 �

+ 8μ/ℏ2

 �

C
q

2
64

3
75
2

: ð53Þ
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Considering the T = 0 andD = 0 limit in equation (52) we
get the following expression which is obtained in [22]

M =mq +m�q +
3A
δ

−
ℏ2

2μ

� 2μ/ℏ2

 �

3A/δ2

 �

+ B

 �

1 + 2nð Þ +
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 + 4l l + 1ð Þ + 8μ/ℏ2


 �
A/δ3

 �

+ 8μ/ℏ2

 �

C
q

2
64

3
75
2

:

ð54Þ

The T = 0, C = 0, andD = 0 limits of equation (52) lead to
the following formula which fully coincides with the quarko-
nium mass formula at zero temperature in [6]

M =mq +m�q +
3A
δ

−
ℏ2

2μ

� 2μ/ℏ2

 �

3A/δ2

 �

1 + 2nð Þ +
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 + 4l l + 1ð Þ + 8μ/ℏ2


 �
A/δ3

 �q

2
64

3
75
2

:

ð55Þ
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Figure 2: The mass spectrum of bottomonium in the 1s, 2s, 3s, 4s, and 5s states as a function of the temperature T with a mass of
mb = 4:823GeV and parameters of A = 0:2GeV2, B = 1:569, and δ = 0:378GeV.
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Figure 1: The mass spectrum of charmonium in the 1s, 2s, 3s, 4s, and 5s states as a function of the temperature T with a mass of
mc = 1:209GeV and parameters of A = 0:2GeV2, B = 1:244, and δ = 0:231GeV.
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Wemay conclude that our current results as presented in
Table 1 and Table 2 are in good agreement with current avail-
able experimental data for all states of charmonium and bot-
tomonium resonances. The main reason why the results for
thep and d states are not in good agreement with the experi-
mental data comes from the nonrelativistic calculation which
we use throughout our calculations. One needs to consider
the spin-spin and spin-orbital interactions terms within the
potential. Thus, the reason is not related to the correct choice
of the parameters or making a better fit. It is impossible to

consider the spin terms within the Schrödinger equation
because of its nonrelativistic nature. These terms should be
considered within the relativistic equations such as within
the Klein-Fock-Gordon and Dirac equations. We are plan-
ning to study it in the future since it is out of the scope of
the current paper.

In Table 3, we present the mass spectrum results for theBc
mesons with masses mc = 1:209GeV and mb = 4:823GeV,
and parameters A = 0:147GeV2, B = 1:204, C = 2:8 × 10−3,
D = 2:4 × 10−5, and δ = 0:379GeV.
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Figure 4: The mass spectrum of charmonium for 1s, 2s, 3s, 4s, and 5s states as a function of the temperature T with a mass ofmc = 1:209GeV
and parameters of A = 0:147GeV2, B = 1:204, C = 2:8 × 10−3, D = 2:4 × 10−5, and δ = 0:379GeV.
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Figure 3: The mass spectrum of b�c for 1s, 2s, 3s, 4s, and 5s states as a function of the temperature T with masses of mc = 1:209GeV and
mb = 4:823GeV and parameters of A = 0:2GeV2, B = 1:407, and δ = 0:324GeV.

9Advances in High Energy Physics



In order to compare our results with the different theoret-
ical works, we present Tables 4 and 5 for the mass spectra of
charmonium and bottomonium accordingly.

5. Temperature Dependence of Quarkonia Mass

In this section, we present the numerical results for the tem-
perature dependence for some heavy meson mass spectra.

In Section 4, we have seen that the present potential
model for describing the heavy quarkonia and Bc meson

mass at zero temperature is quite a good candidate. For
studying the temperature dependence, we will follow [15].

For calculating the mass spectra at finite temperature, we
use the explicit form of the Debye screening mass μDðTÞ
according to [47]:

μD Tð Þ = γαs Tð ÞT , ð56Þ

where γ = 14:652 ± 0:337. In the numerical calculations for
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Figure 6: The mass spectrum of b�c for 1s, 2s, 3s, 4s, and 5s states as a function of the temperature T with masses of mc = 1:209GeV and
mb = 4:823GeV and parameters of A = 0:147GeV2, B = 1:204, C = 2:8 × 10−3, D = 2:4 × 10−5, and δ = 0:379GeV.
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Figure 5: The mass spectrum of bc for 1s, 2s, 3s, 4s, and 5s states as a function of the temperature T with a mass of mb = 4:823GeV and
parameters of A = 0:147GeV2, B = 1:204, C = 2:8 × 10−3, D = 2:4 × 10−5, and δ = 0:379GeV.

10 Advances in High Energy Physics



the running coupling constant αsðTÞ, we will adopt the fol-
lowing form at finite temperature:

αs Tð Þ = 2π
11 − 2/3ð ÞNf


 �
log T/Λð Þ : ð57Þ

Here, we take the critical temperature Tc = ð169 ± 16ÞMeV
from lattice QCD [48] which leads to Λ = βTc = ð17:6 ± 3:2Þ
MeV.In the numerical calculations, we will apply as Nf = 3
with two light quarks of the same mass u and d and one
heavier s. Firstly, we present the graphs for the change of the
meson masses within the temperature-dependent Cornell
potential in Figures 1–3. Afterwards, we present the same cal-
culation for the Cornell plus the inverse quadratic and har-
monic potentials in Figures 4–6. In all these graphs, we see
that there exists a substantial decrement in the meson masses
around T = 120MeVwhich corresponds to T = 0:71Tc. When
we increase the principal quantum number n, the temperature
leads an increment in masses of the charmonium and Bc
mesons up to some point and then there is a sharp decrement.
However, this phenomena is a bit different for the case of bot-
tomonium, such that these states firstly do not change and
then start decreasing after some point.

Notice that although the number of the parameters for
the Cornell potential is less than the current potential, the
results are not so different. Thus, we may conclude that our
observation for the temperature-dependent masses does not
depend much on the number of parameters. Besides that,
our results for the temperature-dependent masses are in
agreement with QCD sum rule results for the ground states
[49]. One needs to perform more analyses for other reso-
nances in order to check the validity of this agreement
between pure nonrelativistic effects and QFT.

These results may open new possibilities for determining
the properties of the interactions in a hadronic system. As a
conclusion of the results presented in these tables and figures
which are based on analytical results, we may draw the fol-
lowing key points: Firstly, temperature-dependent masses
either for the Cornell or the Cornell plus inverse quadratic
and harmonic-type potentials are very sensitive to the choice
of nr radial and l orbital quantum numbers. Secondly, we
may consider the temperature-dependent results valid
because of the similar shapes between the Cornell and cur-
rent potentials. These results are sufficiently accurate for
practical purposes.

6. Conclusion

The temperature-dependent Schrödinger equation is investi-
gated by applying the NU method. As a potential part of the
Schrödinger equation, the Cornell plus inverse quadratic and
harmonic oscillator-type potential is used. Analytical expres-
sion for the energy eigenvalues and the radial wave functions
is presented. Results are used for describing nonzero and zero
temperature mass spectra of heavy quarkonia and Bc.
Numerical results are compared with the experimentally
well-established resonances, and some predictions are pre-
sented for the states which have not been confirmed yet.

For instance, we have the predictions for bottomonium,
namely, besides the Yð1sÞ, Yð2sÞ, Yð3sÞ, and Yð4sÞ reso-
nances, we predict the Yð10860Þ and Yð11020Þ resonances
to be 7s and 10s states, respectively. For the charmonium
states, besides the J/ψð1sÞ and ψð2sÞ resonances, we predict
3s⟶ ψð4040Þ, 4s⟶ ψð4260Þ, and 5s⟶ ψð4415Þ. We
have seen that a zero temperature mass spectrum for l = 0 is
quite in agreement with current experimental data, while
for l ≠ 0, there is some disagreement with experimental data
because of the missing spin-spin and spin-orbital momen-
tum interaction terms within the potential. For the
temperature-dependent case, we see the strong dependence
of the quarkonia mass spectrum on the quantum numbers.
Temperature-dependent results for ground states are in good
agreement with the quantum field theoretical approach such
as the QCD sum rule results. We have seen that the extension
of the Cornell potential leads to slight changes on the masses
for nonzero temperature as well as zero temperature.

It seems that this simple potential model, like other nonrel-
ativistic models, is not enough to describe all the features of
hadrons within a thermal effect such that having all the
hadrons melted at the same temperature contradicts with the
lattice data. The most convenient way to compare the predic-
tion of potential models with a direct calculation of quarko-
nium spectral functions is to calculate the Euclidean meson
correlator at finite temperature to compare the lattice data as
it was done for the Cornell potential in [50, 51]. It has been
shown that even though potential models with certain screened
potentials can reproduce qualitative features of the lattice spec-
tral function, such as the survival of the 1s state and the melting
of the 1p state, the temperature dependence of the meson cor-
relators is not reproduced. According to the lattice results [52,
53] the 1s charmonium survives up to 1:5Tc and the 1p char-
monium dissolves by 1:16Tc and higher excited states disap-
pear near the transition temperature. It is possible that the
effects of the medium on quarkonia binding cannot be under-
stood in a simple potential model. However, one can still do
this comparison for other potential models such as the one
we have used in this paper. One of the main steps for correlator
calculation is about the exact solution of the radial Schrödinger
equation which is already done in this paper.

The method used in this paper are the systematic ones,
and in many cases, it is one of the most concrete works in this
area. In particular, the extended Cornell potential can be one
of the important potentials, and it deserves special concern in
many branches of physics, especially in hadronic, nuclear,
and atomic physics.

Consequently, studying for an analytical solution of the
modified radial Schrödinger equation for the sum of the Cor-
nell, inverse quadratic-, and harmonic-type potentials within
the framework of ordinary quantum mechanics could pro-
vide valuable information on elementary particle physics
and quantum chromodynamics and open new windows for
further investigation.

We can conclude that the theoretical results of this study
are expected to enable new possibilities for pure theoretical
and experimental physicists, because of the exact and more
general nature of the results.
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